SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Michaelsson T) "

Sökning: WFRF:(Michaelsson T)

  • Resultat 1-10 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zillikens, M. C., et al. (författare)
  • Large meta-analysis of genome-wide association studies identifies five loci for lean body mass
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 x 10(-8)) or suggestively genome wide (p < 2.3 x 10(-6)). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/ near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/ near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass.
  •  
2.
  • Karasik, D., et al. (författare)
  • Disentangling the genetics of lean mass
  • 2019
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 109:2, s. 276-287
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Lean body mass (LM) plays an important role in mobility and metabolic function. We previously identified five loci associated with LM adjusted for fat mass in kilograms. Such an adjustment may reduce the power to identify genetic signals having an association with both lean mass and fat mass. Objectives: To determine the impact of different fat mass adjustments on genetic architecture of LM and identify additional LM loci. Methods: We performed genome-wide association analyses for whole-body LM (20 cohorts of European ancestry with n = 38,292) measured using dual-energy X-ray absorptiometry) or bioelectrical impedance analysis, adjusted for sex, age, age(2), and height with or without fat mass adjustments (Model 1 no fat adjustment; Model 2 adjustment for fat mass as a percentage of body mass; Model 3 adjustment for fat mass in kilograms). Results: Seven single-nucleotide polymorphisms (SNPs) in separate loci, including one novel LM locus (TNRC6B), were successfully replicated in an additional 47,227 individuals from 29 cohorts. Based on the strengths of the associations in Model 1 vs Model 3, we divided the LM loci into those with an effect on both lean mass and fat mass in the same direction and refer to those as "sumo wrestler" loci (FTO and MC4R). In contrast, loci with an impact specifically on LMwere termed "body builder" loci (VCAN and ADAMTSL3). Using existing available genome-wide association study databases, LM increasing alleles of SNPs in sumo wrestler loci were associated with an adverse metabolic profile, whereas LM increasing alleles of SNPs in "body builder" loci were associated with metabolic protection. Conclusions: In conclusion, we identified one novel LM locus (TNRC6B). Our results suggest that a genetically determined increase in lean mass might exert either harmful or protective effects on metabolic traits, depending on its relation to fat mass.
  •  
3.
  • Jiang, X., et al. (författare)
  • Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Vitamin D is a steroid hormone precursor that is associated with a range of human traits and diseases. Previous GWAS of serum 25-hydroxyvitamin D concentrations have identified four genome-wide significant loci (GC, NADSYN1/DHCR7, CYP2R1, CYP24A1). In this study, we expand the previous SUNLIGHT Consortium GWAS discovery sample size from 16,125 to 79,366 (all European descent). This larger GWAS yields two additional loci harboring genome-wide significant variants (P = 4.7x10(-9) at rs8018720 in SEC23A, and P = 1.9x10(-14) at rs10745742 in AMDHD1). The overall estimate of heritability of 25-hydroxyvitamin D serum concentrations attributable to GWAS common SNPs is 7.5%, with statistically significant loci explaining 38% of this total. Further investigation identifies signal enrichment in immune and hematopoietic tissues, and clustering with autoimmune diseases in cell-type-specific analysis. Larger studies are required to identify additional common SNPs, and to explore the role of rare or structural variants and gene-gene interactions in the heritability of circulating 25-hydroxyvitamin D levels.
  •  
4.
  •  
5.
  • Manousaki, D., et al. (författare)
  • Low-Frequency Synonymous Coding Variation in CYP2R1 Has Large Effects on Vitamin D Levels and Risk of Multiple Sclerosis
  • 2017
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 101:2, s. 227-238
  • Tidskriftsartikel (refereegranskat)abstract
    • Vitamin D insufficiency is common, correctable, and influenced by genetic factors, and it has been associated with risk of several diseases. We sought to identify low-frequency genetic variants that strongly increase the risk of vitamin D insufficiency and tested their effect on risk of multiple sclerosis, a disease influenced by low vitamin D concentrations. We used whole-genome sequencing data from 2,619 individuals through the UK10K program and deep-imputation data from 39,655 individuals genotyped genome-wide. Meta-analysis of the summary statistics from 19 cohorts identified in CYP2R1 the low-frequency (minor allele frequency = 2.5%) synonymous coding variant g.14900931G>A (p.Asp120Asp) (rs117913124[A]), which conferred a large effect on 25-hydroxyvitamin D (25OHD) levels (-0.43 SD of standardized natural log-transformed 25OHD per A allele; p value = 1.5 x 10(-88)). The effect on 25OHD was four times larger and independent of the effect of a previously described common variant near CYP2R1. By analyzing 8,711 individuals, we showed that heterozygote carriers of this low-frequency variant have an increased risk of vitamin D insufficiency (odds ratio [OR] = 2.2, 95% confidence interval [CI] = 1.78-2.78, p = 1.26 3 10 x(-12)). Individuals carrying one copy of this variant also had increased odds of multiple sclerosis (OR = 1.4, 95% CI = 1.19-1.64, p = 2.63 3 10 x(-5)) in a sample of 5,927 case and 5,599 control subjects. In conclusion, we describe a low-frequency CYP2R1 coding variant that exerts the largest effect upon 25OHD levels identified to date in the general European population and implicates vitamin D in the etiology of multiple sclerosis.
  •  
6.
  •  
7.
  • Vimaleswaran, K. S., et al. (författare)
  • Causal Relationship between Obesity and Vitamin D Status: Bi-Directional Mendelian Randomization Analysis of Multiple Cohorts
  • 2013
  • Ingår i: Plos Medicine. - : Public Library of Science (PLoS). - 1549-1676 .- 1549-1277. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Obesity is associated with vitamin D deficiency, and both are areas of active public health concern. We explored the causality and direction of the relationship between body mass index (BMI) and 25-hydroxyvitamin D [25(OH)D] using genetic markers as instrumental variables (IVs) in bi-directional Mendelian randomization (MR) analysis. METHODS AND FINDINGS: We used information from 21 adult cohorts (up to 42,024 participants) with 12 BMI-related SNPs (combined in an allelic score) to produce an instrument for BMI and four SNPs associated with 25(OH)D (combined in two allelic scores, separately for genes encoding its synthesis or metabolism) as an instrument for vitamin D. Regression estimates for the IVs (allele scores) were generated within-study and pooled by meta-analysis to generate summary effects. Associations between vitamin D scores and BMI were confirmed in the Genetic Investigation of Anthropometric Traits (GIANT) consortium (n=123,864). Each 1 kg/m(2) higher BMI was associated with 1.15% lower 25(OH)D (p=6.52×10⁻²⁷). The BMI allele score was associated both with BMI (p=6.30×10⁻⁶²) and 25(OH)D (-0.06% [95% CI -0.10 to -0.02], p=0.004) in the cohorts that underwent meta-analysis. The two vitamin D allele scores were strongly associated with 25(OH)D (p≤8.07×10⁻⁵⁷ for both scores) but not with BMI (synthesis score, p=0.88; metabolism score, p=0.08) in the meta-analysis. A 10% higher genetically instrumented BMI was associated with 4.2% lower 25(OH)D concentrations (IV ratio: -4.2 [95% CI -7.1 to -1.3], p=0.005). No association was seen for genetically instrumented 25(OH)D with BMI, a finding that was confirmed using data from the GIANT consortium (p≥0.57 for both vitamin D scores). CONCLUSIONS: On the basis of a bi-directional genetic approach that limits confounding, our study suggests that a higher BMI leads to lower 25(OH)D, while any effects of lower 25(OH)D increasing BMI are likely to be small. Population level interventions to reduce BMI are expected to decrease the prevalence of vitamin D deficiency.
  •  
8.
  • Divaris, K., et al. (författare)
  • Phenotype Harmonization in the GLIDE2 Oral Health Genomics Consortium
  • 2022
  • Ingår i: Journal of Dental Research. - : Sage Publications. - 0022-0345 .- 1544-0591. ; 101:11, s. 1408-1416
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic risk factors play important roles in the etiology of oral, dental, and craniofacial diseases. Identifying the relevant risk loci and understanding their molecular biology could highlight new prevention and management avenues. Our current understanding of oral health genomics suggests that dental caries and periodontitis are polygenic diseases, and very large sample sizes and informative phenotypic measures are required to discover signals and adequately map associations across the human genome. In this article, we introduce the second wave of the Gene-Lifestyle Interactions and Dental Endpoints consortium (GLIDE2) and discuss relevant data analytics challenges, opportunities, and applications. In this phase, the consortium comprises a diverse, multiethnic sample of over 700,000 participants from 21 studies contributing clinical data on dental caries experience and periodontitis. We outline the methodological challenges of combining data from heterogeneous populations, as well as the data reduction problem in resolving detailed clinical examination records into tractable phenotypes, and describe a strategy that addresses this. Specifically, we propose a 3-tiered phenotyping approach aimed at leveraging both the large sample size in the consortium and the detailed clinical information available in some studies, wherein binary, severity-encompassing, and “precision,” data-driven clinical traits are employed. As an illustration of the use of data-driven traits across multiple cohorts, we present an application of dental caries experience data harmonization in 8 participating studies (N = 55,143) using previously developed permanent dentition tooth surface–level dental caries pattern traits. We demonstrate that these clinical patterns are transferable across multiple cohorts, have similar relative contributions within each study, and thus are prime targets for genetic interrogation in the expanded and diverse multiethnic sample of GLIDE2. We anticipate that results from GLIDE2 will decisively advance the knowledge base of mechanisms at play in oral, dental, and craniofacial health and disease and further catalyze international collaboration and data and resource sharing in genomics research.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 43
Typ av publikation
tidskriftsartikel (38)
konferensbidrag (4)
annan publikation (1)
Typ av innehåll
refereegranskat (38)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Lind, Lars (15)
Michaelsson, J (10)
Ohlsson, Claes, 1965 (9)
Melhus, Håkan (9)
Lorentzon, Mattias, ... (8)
Lind, L (7)
visa fler...
Vandenput, Liesbeth, ... (6)
Mellström, Dan, 1945 (6)
Karlsson, Magnus (5)
Ljunggren, HG (5)
Wareham, N. J. (4)
Achour, A (4)
Sandalova, T (4)
Schneider, G (4)
Ferrucci, L (4)
Lahti, J (4)
Eriksson, Joel (4)
Lehtimaki, T. (4)
Rotter, J. I. (4)
Psaty, B. M. (4)
Campbell, H (4)
Rivadeneira, F (4)
Tikkanen, E (4)
Gieger, C (4)
Ingelsson, E (4)
Salomaa, V (4)
Luan, J. (3)
Khaw, K. T. (3)
Amin, N (3)
Harris, RA (3)
Nethander, Maria, 19 ... (3)
Walker, M (3)
Karre, K (3)
Gudnason, V (3)
Hofman, A (3)
Volzke, H (3)
Mitchell, B. D. (3)
Grallert, H. (3)
Vollenweider, P. (3)
Kutalik, Z. (3)
Marz, W. (3)
Barroso, I (3)
Langenberg, Claudia (3)
Ingelsson, Erik (3)
Kraft, P (3)
Lehtimäki, Terho (3)
Brownlie, D (3)
Marquardt, N (3)
Danesh, J (3)
Ripatti, S (3)
visa färre...
Lärosäte
Karolinska Institutet (30)
Uppsala universitet (22)
Göteborgs universitet (11)
Lunds universitet (10)
Umeå universitet (4)
Linköpings universitet (3)
visa fler...
Kungliga Tekniska Högskolan (2)
Stockholms universitet (1)
Örebro universitet (1)
Malmö universitet (1)
visa färre...
Språk
Engelska (42)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (23)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy