SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Michalik Marek) "

Sökning: WFRF:(Michalik Marek)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ladenberger, Anna, et al. (författare)
  • CO2 fluid inclusions in mantle xenoliths from Lower Silesia (SW Poland) : formation conditions and decompression history
  • 2009
  • Ingår i: European journal of mineralogy. - : Schweizerbart. - 0935-1221 .- 1617-4011. ; 21:4, s. 751-761
  • Tidskriftsartikel (refereegranskat)abstract
    • Raman spectroscopy has been applied to determine the density and pressure of formation of CO2 fluid inclusions in mantle xenoliths, carried to the surface at Wilcza Gora in southwestern Poland by early Miocene alkaline magmas. The magmas were generated by partial melting in the transition zone between the spinel and garnet stability fields. Determination of the densities of CO2 inclusions allows calculation of the partial pressures and reconstruction of the depth of xenolith origin as well as their history en route to the surface. The density of CO2 inclusions ranges from 0.06 to 1.10 g/cm(3) in olivines and 0.17 to 1.11 g/cm(3) in orthopyroxenes. Only inclusions with a density above 0.8 g/cm(3) reflect lower crust (ca. 15-30 km) and upper mantle (ca. 30-38 km) conditions. Slight differences in density of the inclusions between olivines and orthopyroxenes can be attributed to their different theological properties during magma ascent. Modelling of pressure and depth within the temperature range in which the xenoliths equilibrated with the magmas yields information about the complex eruption history of basanitic volcanoes. Our estimates are consistent with seismic data that show a regional high-velocity layer at the Moho (ca. 30-35 km deep) with p-wave velocities up to 8 km/s which have been attributed to mafic and ultramafic lithologies.
  •  
2.
  • Szewczyk, Ireneusz, et al. (författare)
  • Electrochemical Denitrification and Oxidative Dehydrogenation of Ethylbenzene over N-doped Mesoporous Carbon : Atomic Level Understanding of Catalytic Activity by N-15 NMR Spectroscopy
  • 2020
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 32:17, s. 7263-7273
  • Tidskriftsartikel (refereegranskat)abstract
    • Spherical mesoporous carbon (with a particle size in the range of 40−75 μm) was synthesized by nanoreplication of a hard silica template using sucrose as the carbon precursor. The mesoporous carbon with BET surface areas higher than 1200 m2/g was doped with N by a treatment in an aqueous solution of nitric acid and/or in a flow of gaseous ammonia. The highest N content (3.2 wt % of N in bulk) was obtained when both modification methods were combined. Complementary physicochemical characterization techniques, including scanning electron microscopy (SEM), low-temperature N2 adsorption, powder X-ray diffraction (XRD), and Raman spectroscopy revealed the morphology, structure, and textural properties of the synthesized N-loaded carbon materials. For the identification of the detailed chemical structure on the surface of the carbons, 1H, 13C, and 15N solid-state nuclear magnetic resonance (NMR) measurements were performed, and the data were supported by chemical shift calculations with accurate quantum chemistry methods and X-ray photoelectron spectroscopic (XPS) analyses. All NMR experiments were performed at natural isotope abundance. The verified experimental data clearly showed that after the introduction of the N-containing moieties by the combined methods of treatment, a high concentration of pyridinic N at the edge, and pyrrolic N being external to the edge, was achieved for the mesoporous carbon. The distributed N surface species promoted the catalytic activity in the oxidative dehydrogenation of ethylbenzene to styrene but did not significantly influence the efficiency of the carbon materials in the electrochemical reduction of nitrate ions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy