SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Micheli Laura) "

Sökning: WFRF:(Micheli Laura)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Balayssac, David, et al. (författare)
  • Neurofilament light chain in plasma as a sensitive diagnostic biomarker of peripheral neurotoxicity : In Vivo mouse studies with oxaliplatin and paclitaxel - NeuroDeRisk project
  • 2023
  • Ingår i: Biomedicine and Pharmacotherapy. - : Elsevier. - 0753-3322 .- 1950-6007. ; 167
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying compounds that are neurotoxic either toward the central or the peripheral nervous systems (CNS or PNS) would greatly benefit early stages of drug development by derisking liabilities and selecting safe compounds. Unfortunately, so far assays mostly rely on histopathology findings often identified after repeated-dose toxicity studies in animals. The European NeuroDeRisk project aimed to provide comprehensive tools to identify compounds likely inducing neurotoxicity. As part of this project, the present work aimed to identify diagnostic non-invasive biomarkers of PNS toxicity in mice. We used two neurotoxic drugs in vivo to correlate functional, histopathological and biological findings. CD1 male mice received repeated injections of oxaliplatin or paclitaxel followed by an assessment of drug exposure in CNS/PNS tissues. Functional signs of PNS toxicity were assessed using electronic von Frey and cold paw immersion tests (oxaliplatin), and functional observational battery, rotarod and cold plate tests (paclitaxel). Plasma concentrations of neurofilament light chain (NF-L) and vascular endothelial growth factor A (VEGF-A) were measured, and histopathological evaluations were performed on a comprehensive list of CNS and PNS tissues. Functional PNS toxicity was observed only in oxaliplatin-treated mice. Histopathological findings were observed dose-dependently only in paclitaxel groups. While no changes of VEGF-A concentrations was recorded, NF-L concentrations were increased only in paclitaxel-treated animals as early as 7 days after the onset of drug administration. These results show that plasma NF-L changes correlated with microscopic changes in the PNS, thus strongly suggesting that NF-L could be a sensitive and specific biomarker of PNS toxicity in mice.
  •  
2.
  • Breznau, Nate, et al. (författare)
  • Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:44
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explores how researchers analytical choices affect the reliability of scientific findings. Most discussions of reliability problems in science focus on systematic biases. We broaden the lens to emphasize the idiosyncrasy of conscious and unconscious decisions that researchers make during data analysis. We coordinated 161 researchers in 73 research teams and observed their research decisions as they used the same data to independently test the same prominent social science hypothesis: that greater immigration reduces support for social policies among the public. In this typical case of social science research, research teams reported both widely diverging numerical findings and substantive conclusions despite identical start conditions. Researchers expertise, prior beliefs, and expectations barely predict the wide variation in research outcomes. More than 95% of the total variance in numerical results remains unexplained even after qualitative coding of all identifiable decisions in each teams workflow. This reveals a universe of uncertainty that remains hidden when considering a single study in isolation. The idiosyncratic nature of how researchers results and conclusions varied is a previously underappreciated explanation for why many scientific hypotheses remain contested. These results call for greater epistemic humility and clarity in reporting scientific findings.
  •  
3.
  • Fedorets, Grigori, et al. (författare)
  • Establishing Earth's Minimoon Population through Characterization of Asteroid 2020 CD3
  • 2020
  • Ingår i: Astronomical Journal. - : Institute of Physics (IOP). - 0004-6256 .- 1538-3881. ; 160:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on our detailed characterization of Earth's second known temporary natural satellite, or minimoon, asteroid 2020 CD3. An artificial origin can be ruled out based on its area-to-mass ratio and broadband photometry, which suggest that it is a silicate asteroid belonging to the S or V complex in asteroid taxonomy. The discovery of 2020 CD3 allows for the first time a comparison between known minimoons and theoretical models of their expected physical and dynamical properties. The estimated diameter of (+0.4, -0.2) m and geocentric capture approximately a decade after the first known minimoon, 2006 RH120, are in agreement with theoretical predictions. The capture duration of 2020 CD3 of at least 2.7 yr is unexpectedly long compared to the simulation average, but it is in agreement with simulated minimoons that have close lunar encounters, providing additional support for the orbital models. 2020 CD3's atypical rotation period, significantly longer than theoretical predictions, suggests that our understanding of meter-scale asteroids needs revision. More discoveries and a detailed characterization of the population can be expected with the forthcoming Vera C. Rubin Observatory Legacy Survey of Space and Time.
  •  
4.
  • Gioia, Roberta, et al. (författare)
  • Adult hippocampal neurogenesis and social behavioural deficits in the R451C Neuroligin3 mouse model of autism are reverted by the antidepressant fluoxetine
  • 2023
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 165:3, s. 318-333
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuron generation persists throughout life in the hippocampus but is altered in animal models of neurological and neuropsychiatric diseases, suggesting that disease-associated decline in cognitive and emotional hippocampal-dependent behaviours might be functionally linked with dysregulation of postnatal neurogenesis. Depletion of the adult neural stem/progenitor cell (NSPCs) pool and neurogenic decline have been recently described in mice expressing synaptic susceptibility genes associated with autism spectrum disorder (ASDs). To gain further insight into mechanisms regulating neurogenesis in mice carrying mutations in synaptic genes related to monogenic ASDs, we used the R451C Neuroligin3 knock-in (Nlgn3 KI) mouse, which is characterized by structural brain abnormalities, deficits in synaptic functions and reduced sociability. We show that the number of adult-born neurons, but not the size of the NSPC pool, was reduced in the ventral dentate gyrus in knock-in mice. Notably, this neurogenic decline was rescued by daily injecting mice with 10 mg/Kg of the antidepressant fluoxetine for 20 consecutive days. Sustained treatment also improved KI mice's sociability and increased the number of c-Fos active adult-born neurons, compared with vehicle-injected KI mice. Our study uncovers neurogenesis-mediated alterations in the brain of R451C KI mouse, showing that the R451C Nlgn3 mutation leads to lasting, albeit pharmacologically reversible, changes in the brain, affecting neuron formation in the adult hippocampus. Our results suggest that fluoxetine can ameliorate social behaviour in KI mice, at least in part, by rescuing adult hippocampal neurogenesis, which may be relevant for the pharmacological treatment of ASDs. (Figure presented.).
  •  
5.
  • Jones, Geraint H., et al. (författare)
  • The Comet Interceptor Mission
  • 2024
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 220:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum Δ V capability of 600 ms − 1 . Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.
  •  
6.
  • Sumaila, U. Rashid, et al. (författare)
  • WTO must ban harmful fisheries subsidies
  • 2021
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 374:6567, s. 544-544
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy