SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Michelsen S) "

Sökning: WFRF:(Michelsen S)

  • Resultat 1-10 av 78
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dornelas, M., et al. (författare)
  • BioTIME: A database of biodiversity time series for the Anthropocene
  • 2018
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:7, s. 760-786
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km(2) (158 cm(2)) to 100 km(2) (1,000,000,000,000 cm(2)). Time period and grainBio: TIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.
  •  
2.
  • Thomas, H. J. D., et al. (författare)
  • Global plant trait relationships extend to the climatic extremes of the tundra biome
  • 2020
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
  •  
3.
  • Thomas, H. J.D., et al. (författare)
  • Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome
  • 2019
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 28:2, s. 78-95
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 The Authors Global Ecology and Biogeography Published by John Wiley & Sons Ltd Aim: Plant functional groups are widely used in community ecology and earth system modelling to describe trait variation within and across plant communities. However, this approach rests on the assumption that functional groups explain a large proportion of trait variation among species. We test whether four commonly used plant functional groups represent variation in six ecologically important plant traits. Location: Tundra biome. Time period: Data collected between 1964 and 2016. Major taxa studied: 295 tundra vascular plant species. Methods: We compiled a database of six plant traits (plant height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, seed mass) for tundra species. We examined the variation in species-level trait expression explained by four traditional functional groups (evergreen shrubs, deciduous shrubs, graminoids, forbs), and whether variation explained was dependent upon the traits included in analysis. We further compared the explanatory power and species composition of functional groups to alternative classifications generated using post hoc clustering of species-level traits. Results: Traditional functional groups explained significant differences in trait expression, particularly amongst traits associated with resource economics, which were consistent across sites and at the biome scale. However, functional groups explained 19% of overall trait variation and poorly represented differences in traits associated with plant size. Post hoc classification of species did not correspond well with traditional functional groups, and explained twice as much variation in species-level trait expression. Main conclusions: Traditional functional groups only coarsely represent variation in well-measured traits within tundra plant communities, and better explain resource economic traits than size-related traits. We recommend caution when using functional group approaches to predict tundra ecosystem change, or ecosystem functions relating to plant size, such as albedo or carbon storage. We argue that alternative classifications or direct use of specific plant traits could provide new insight into ecological prediction and modelling.
  •  
4.
  • Maes, S.L., et al. (författare)
  • Environmental drivers of increased ecosystem respiration in a warming tundra
  • 2024
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 629:8010, s. 105-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic and alpine tundra ecosystems are large reservoirs of organic carbon. Climate warming may stimulate ecosystem respiration and release carbon into the atmosphere. The magnitude and persistency of this stimulation and the environmental mechanisms that drive its variation remain uncertain. This hampers the accuracy of global land carbon–climate feedback projections. Here we synthesize 136 datasets from 56 open-top chamber in situ warming experiments located at 28 arctic and alpine tundra sites which have been running for less than 1 year up to 25 years. We show that a mean rise of 1.4 °C [confidence interval (CI) 0.9–2.0 °C] in air and 0.4 °C [CI 0.2–0.7 °C] in soil temperature results in an increase in growing season ecosystem respiration by 30% [CI 22–38%] (n = 136). Our findings indicate that the stimulation of ecosystem respiration was due to increases in both plant-related and microbial respiration (n = 9) and continued for at least 25 years (n = 136). The magnitude of the warming effects on respiration was driven by variation in warming-induced changes in local soil conditions, that is, changes in total nitrogen concentration and pH and by context-dependent spatial variation in these conditions, in particular total nitrogen concentration and the carbon:nitrogen ratio. Tundra sites with stronger nitrogen limitations and sites in which warming had stimulated plant and microbial nutrient turnover seemed particularly sensitive in their respiration response to warming. The results highlight the importance of local soil conditions and warming-induced changes therein for future climatic impacts on respiration.
  •  
5.
  • Munch, Marie W., et al. (författare)
  • Effect of 12 mg vs 6 mg of Dexamethasone on the Number of Days Alive Without Life Support in Adults With COVID-19 and Severe Hypoxemia The COVID STEROID 2 Randomized Trial
  • 2021
  • Ingår i: Journal of the American Medical Association (JAMA). - : AMER MEDICAL ASSOC. - 0098-7484 .- 1538-3598. ; 326:18, s. 1807-1817
  • Tidskriftsartikel (refereegranskat)abstract
    • Question What is the effect of 12 mg vs 6 mg of dexamethasone on the number of days alive without life support at 28 days in patients with COVID-19 and severe hypoxemia? Findings In this randomized trial that included 1000 patients with COVID-19 and severe hypoxemia, treatment with 12 mg/d of dexamethasone resulted in 22.0 days alive without life support at 28 days compared with 20.5 days in those receiving 6 mg/d of dexamethasone. This difference was not statistically significant. Meaning Compared with 6 mg of dexamethasone, 12 mg of dexamethasone did not statistically significantly reduce the number of days alive without life support at 28 days. This multicenter randomized clinical trial compares the effects of 12 mg/d vs 6 mg/d of dexamethasone in patients with COVID-19 and severe hypoxemia. IMPORTANCE A daily dose with 6 mg of dexamethasone is recommended for up to 10 days in patients with severe and critical COVID-19, but a higher dose may benefit those with more severe disease. OBJECTIVE To assess the effects of 12 mg/d vs 6 mg/d of dexamethasone in patients with COVID-19 and severe hypoxemia. DESIGN, SETTING, AND PARTICIPANTS A multicenter, randomized clinical trial was conducted between August 2020 and May 2021 at 26 hospitals in Europe and India and included 1000 adults with confirmed COVID-19 requiring at least 10 L/min of oxygen or mechanical ventilation. End of 90-day follow-up was on August 19, 2021. INTERVENTIONS Patients were randomized 1:1 to 12 mg/d of intravenous dexamethasone (n = 503) or 6 mg/d of intravenous dexamethasone (n = 497) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was the number of days alive without life support (invasive mechanical ventilation, circulatory support, or kidney replacement therapy) at 28 days and was adjusted for stratification variables. Of the 8 prespecified secondary outcomes, 5 are included in this analysis (the number of days alive without life support at 90 days, the number of days alive out of the hospital at 90 days, mortality at 28 days and at 90 days, and >= 1 serious adverse reactions at 28 days). RESULTS Of the 1000 randomized patients, 982 were included (median age, 65 [IQR, 55-73] years; 305 [31%] women) and primary outcome data were available for 971 (491 in the 12 mg of dexamethasone group and 480 in the 6 mg of dexamethasone group). The median number of days alive without life support was 22.0 days (IQR, 6.0-28.0 days) in the 12 mg of dexamethasone group and 20.5 days (IQR, 4.0-28.0 days) in the 6 mg of dexamethasone group (adjusted mean difference, 1.3 days [95% CI, 0-2.6 days]; P = .07). Mortality at 28 days was 27.1% in the 12 mg of dexamethasone group vs 32.3% in the 6 mg of dexamethasone group (adjusted relative risk, 0.86 [99% CI, 0.68-1.08]). Mortality at 90 days was 32.0% in the 12 mg of dexamethasone group vs 37.7% in the 6 mg of dexamethasone group (adjusted relative risk, 0.87 [99% CI, 0.70-1.07]). Serious adverse reactions, including septic shock and invasive fungal infections, occurred in 11.3% in the 12 mg of dexamethasone group vs 13.4% in the 6 mg of dexamethasone group (adjusted relative risk, 0.83 [99% CI, 0.54-1.29]). CONCLUSIONS AND RELEVANCE Among patients with COVID-19 and severe hypoxemia, 12 mg/d of dexamethasone compared with 6 mg/d of dexamethasone did not result in statistically significantly more days alive without life support at 28 days. However, the trial may have been underpowered to identify a significant difference.
  •  
6.
  • Natali, S. M., et al. (författare)
  • Large loss of CO2 in winter observed across the northern permafrost region
  • 2019
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 9:11, s. 852-857
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent warming in the Arctic, which has been amplified during the winter(1-3), greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)(4). However, the amount of CO2 released in winter is not known and has not been well represented by ecosystem models or empirically based estimates(5,6). Here we synthesize regional in situ observations of CO2 flux from Arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1,662 TgC per year from the permafrost region during the winter season (October-April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1,032 TgC per year). Extending model predictions to warmer conditions up to 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario-Representative Concentration Pathway 4.5-and 41% under business-as-usual emissions scenario-Representative Concentration Pathway 8.5. Our results provide a baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.
  •  
7.
  • Sarneel, Judith M., et al. (författare)
  • Reading tea leaves worldwide : decoupled drivers of initial litter decomposition mass-loss rate and stabilization
  • 2024
  • Ingår i: Ecology Letters. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 27:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
  •  
8.
  •  
9.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
10.
  • Mikkelsen, T N, et al. (författare)
  • Experimental design of multifactor climate change experiments with elevated CO2, warming and drought: the CLIMAITE project
  • 2008
  • Ingår i: Functional Ecology. - : Wiley. - 1365-2435 .- 0269-8463. ; 22:1, s. 185-195
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent findings indicate that the interactions among CO2, temperature and water can be substantial, and that the combined effects on the biological systems of several factors may not be predicted from experiments with one or a few factors. Therefore realistic multifactorial experiments involving a larger set of main factors are needed. We describe a new Danish climate change-related field scale experiment, CLIMAITE, in a heath/grassland ecosystem. CLIMAITE is a full factorial combination of elevated CO2, elevated temperature and prolonged summer drought. The manipulations are intended to mimic anticipated major environmental changes at the site by year 2075 as closely as possible. The impacts on ecosystem processes and functioning (at ecophysiological levels, through responses by individuals and communities to ecosystem-level responses) are investigated simultaneously. The increase of [CO2] closely corresponds with the scenarios for year 2075, while the warming treatment is at the lower end of the predictions and seems to be the most difficult treatment to increase without unwanted side effects on the other variables. The drought treatment follows predictions of increased frequency of drought periods in summer. The combination of the treatments does not create new unwanted side effects on the treatments relative to the treatments alone.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 78
Typ av publikation
tidskriftsartikel (66)
konferensbidrag (9)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (65)
övrigt vetenskapligt/konstnärligt (13)
Författare/redaktör
Michelsen, B (24)
Gudbjornsson, B (21)
Askling, J (17)
Rotar, Z. (17)
Tomsic, M. (17)
Glintborg, B (16)
visa fler...
di Giuseppe, D (16)
Codreanu, C. (15)
Ciurea, A (14)
Ostergaard, M. (13)
Iannone, F. (13)
Pavelka, K (12)
Zavada, J (12)
Hetland, ML (11)
Santos, MJ (11)
Lindström, Ulf (10)
Michelsen, Anders (10)
Hetland, M. L. (10)
Pombo-Suarez, M (10)
Fauconnier, J (9)
Arnaud, C. (9)
Nordstrom, D (9)
Colver, A (9)
Ionescu, R. (9)
Sanchez-Piedra, C. (9)
Loft, AG (9)
Van der Horst-Bruins ... (9)
Michelsen, S. I. (9)
Parkinson, K. (8)
Parkes, J (8)
Relas, H (8)
Ornbjerg, LM (8)
Geirsson, AJ (7)
Björk, Robert G., 19 ... (7)
Thyen, U. (7)
Wallman, JK (7)
Macfarlane, G (7)
Santos, H. (6)
Molau, Ulf, 1951 (6)
Jacobsson, Lennart T ... (6)
Beckung, Eva, 1950 (6)
Björkman, Anne, 1981 (6)
Marcelli, M. (6)
McManus, V (6)
Cooper, Elisabeth J. (6)
Rixen, C. (6)
Østergaard, M (6)
Nissen, MJ (6)
Akar, S (6)
Dickinson, H. O. (6)
visa färre...
Lärosäte
Göteborgs universitet (38)
Karolinska Institutet (29)
Lunds universitet (18)
Umeå universitet (9)
Uppsala universitet (6)
Sveriges Lantbruksuniversitet (6)
visa fler...
Stockholms universitet (4)
Högskolan i Halmstad (2)
Högskolan i Gävle (2)
Mälardalens universitet (2)
Örebro universitet (2)
Chalmers tekniska högskola (2)
Linköpings universitet (1)
Jönköping University (1)
Naturhistoriska riksmuseet (1)
VTI - Statens väg- och transportforskningsinstitut (1)
visa färre...
Språk
Engelska (78)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (30)
Medicin och hälsovetenskap (25)
Samhällsvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy