SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Michopoulos Filippos) "

Sökning: WFRF:(Michopoulos Filippos)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hage, Camilla, et al. (författare)
  • Metabolomic Profile in HFpEF vs HFrEF Patients
  • 2020
  • Ingår i: Journal of Cardiac Failure. - : Elsevier BV. - 1071-9164 .- 1532-8414. ; 26:12, s. 1050-1059
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Heart failure with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF) are associated with metabolic derangements, which may have different pathophysiological implications.Methods and Results: In new-onset HFpEF (EF of >= 50%, n = 46) and HFrEF (EF of <40%, n = 75) patients, 109 endogenous plasma metabolites including amino acids, phospholipids and acylcarnitines were assessed using targeted metabolomics. Differentially altered metabolites and associations with clinical characteristics were explored. Patients with HFpEF were older, more often female with hypertension, atrial fibrillation, and diabetes compared with patients with HFrEF. Patients with HFpEF displayed higher levels of hydroxyproline and symmetric dimethyl arginine, alanine, cystine, and kynurenine reflecting fibrosis, inflammation and oxidative stress. Serine, cGMP, cAMP, L-carnitine, lysophophatidylcholine (18:2), lactate, and arginine were lower compared with patients with HFrEF. In patients with HFpEF with diabetes, kynurenine was higher (P = .014) and arginine lower (P = .014) vs patients with no diabetes, but did not differ with diabetes status in HFrEF. Decreasing kynurenine was associated with higher eGFR only in HFpEF (P-interaction = .020).Conclusions: Patients with new-onset HFpEF compared with patients with new-onset HFrEF display a different metabolic profile associated with comorbidities, such as diabetes and kidney dysfunction. HFpEF is associated with indices of increased inflammation and oxidative stress, impaired lipid metabolism, increased collagen synthesis, and downregulated nitric oxide signaling. Together, these findings suggest a more predominant systemic microvascular endothelial dysfunction and inflammation linked to increased fibrosis in HFpEF compared with HFrEF.
  •  
2.
  • Swales, John G., et al. (författare)
  • Quantitation of Endogenous Metabolites in Mouse Tumors Using Mass-Spectrometry Imaging
  • 2018
  • Ingår i: Analytical Chemistry. - : AMER CHEMICAL SOC. - 0003-2700 .- 1520-6882. ; 90:10, s. 6051-6058
  • Tidskriftsartikel (refereegranskat)abstract
    • Described is a quantitative-mass-spectrometry-imaging (qMSI) methodology for the analysis of lactate and glutamate distributions in order to delineate heterogeneity among mouse tumor models used to support drug-discovery efficacy testing. We evaluate and report on preanalysis-stabilization methods aimed at improving the reproducibility and efficiency of quantitative assessments of endogenous molecules in tissues. Stability experiments demonstrate that optimum stabilization protocols consist of frozen-tissue embedding, post-tissue-sectioning desiccation, and storage at -80 degrees C of tissue sections sealed in vacuum-tight containers. Optimized stabilization protocols are used in combination with qMSI methodology for the absolute quantitation of lactate and glutamate in tumors, incorporating the use of two different stable-isotope-labeled versions of each analyte and spectral-clustering performed on each tissue section using k-means clustering to allow region-specific, pixel-by-pixel quantitation. Region-specific qMSI was used to screen different tumor models and identify a phenotype that has low lactate heterogeneity, which will enable accurate measurements of lactate modulation in future drug-discovery studies. We conclude that using optimized qMSI protocols, it is possible to quantify endogenous metabolites within tumors, and region-specific quantitation can provide valuable insight into tissue heterogeneity and the tumor microenvironment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy