SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Middelburg R A) "

Sökning: WFRF:(Middelburg R A)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Cole, J.J., et al. (författare)
  • Plumbing the global carbon cycle : Integrating inland waters into the terrestrial carbon budget
  • 2007
  • Ingår i: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 10:1, s. 172-185
  • Forskningsöversikt (refereegranskat)abstract
    • Because freshwater covers such a small fraction of the Earth’s surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking published estimates of gas exchange, sediment accumulation, and carbon transport for a variety of aquatic systems, we have constructed a budget for the role of inland water ecosystems in the global carbon cycle. Our analysis conservatively estimates that inland waters annually receive, from a combination of background and anthropogenically altered sources, on the order of 1.9 Pg C y−1 from the terrestrial landscape, of which about 0.2 is buried in aquatic sediments, at least 0.8 (possibly much more) is returned to the atmosphere as gas exchange while the remaining 0.9 Pg y−1 is delivered to the oceans, roughly equally as inorganic and organic carbon. Thus, roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea. Over prolonged time net carbon fluxes in aquatic systems tend to be greater per unit area than in much of the surrounding land. Although their area is small, these freshwater aquatic systems can affect regional C balances. Further, the inclusion of inland, freshwater ecosystems provides useful insight about the storage, oxidation and transport of terrestrial C, and may warrant a revision of how the modern net C sink on land is described.
  •  
3.
  • Downing, J. A., et al. (författare)
  • Global abundance and size distribution of streams and rivers
  • 2012
  • Ingår i: Inland Waters. - 2044-2041 .- 2044-205X. ; 2:4, s. 229-236
  • Tidskriftsartikel (refereegranskat)abstract
    • To better integrate lotic ecosystems into global cycles and budgets, we provide approximations of the size-distribution and areal extent of streams and rivers. One approach we used was to employ stream network theory combined with data on stream width. We also used detailed stream networks on 2 continents to estimate the fraction of continental area occupied by streams worldwide and corrected remote sensing stream inventories for unresolved small streams. Our estimates of global fluvial area are 485 000 to 662 000 km2 and are +30–300% of published appraisals. Moderately sized rivers (orders 5–9) seem to comprise the greatest global area, with less area covered by low and high order streams, while global stream length, and therefore the riparian interface, is dominated by 1st order streams. Rivers and streams are likely to cover 0.30–0.56% of the land surface and make contributions to global processes and greenhouse gas emissions that may be +20–200% greater than those implied by previous estimates.
  •  
4.
  • Downing, J. A., et al. (författare)
  • The global abundance and size distribution of lakes, ponds, and impoundments
  • 2006
  • Ingår i: Limnology and Oceanography. - 0024-3590 .- 1939-5590. ; 51:5, s. 2388-2397
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the major impediments to the integration of lentic ecosystems into global environmental analyses has been fragmentary data on the extent and size distribution of lakes, ponds, and impoundments. We use new data sources, enhanced spatial resolution, and new analytical approaches to provide new estimates of the global abundance of surface-water bodies. A global model based on the Pareto distribution shows that the global extent of natural lakes is twice as large as previously known (304 million lakes; 4.2 million km(2) in area) and is dominated in area by millions of water bodies smaller than 1 km(2). Similar analyses of impoundments based on inventories of large, engineered dams show that impounded waters cover approximately 0.26 million km(2). However, construction of low-tech farm impoundments is estimated to be between 0.1% and 6% of farm area worldwide, dependent upon precipitation, and represents > 77,000 km(2) globally, at present. Overall, about 4.6 million km(2) of the earth's continental "land" surface (> 3%) is covered by water. These analyses underscore the importance of explicitly considering lakes, ponds, and impoundments, especially small ones, in global analyses of rates and processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy