SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Miehe Georg) "

Sökning: WFRF:(Miehe Georg)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Miehe, Georg, et al. (författare)
  • The Kobresia pygmaea ecosystem of the Tibetan highlands – Origin, functioning and degradation of the world's largest pastoral alpine ecosystem: Kobresia pastures of Tibet
  • 2019
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697. ; 648, s. 754-771
  • Tidskriftsartikel (refereegranskat)abstract
    • With 450,000 km2 Kobresia (syn. Carex) pygmaea dominated pastures in the eastern Tibetan highlands are the world's largest pastoral alpine ecosystem forming a durable turf cover at 3000–6000 m a.s.l. Kobresia's resilience and competitiveness is based on dwarf habit, predominantly below-ground allocation of photo assimilates, mixture of seed production and clonal growth, and high genetic diversity. Kobresia growth is co-limited by livestock-mediated nutrient withdrawal and, in the drier parts of the plateau, low rainfall during the short and cold growing season. Overstocking has caused pasture degradation and soil deterioration over most parts of the Tibetan highlands and is the basis for this man-made ecosystem. Natural autocyclic processes of turf destruction and soil erosion are initiated through polygonal turf cover cracking, and accelerated by soil-dwelling endemic small mammals in the absence of predators. The major consequences of vegetation cover deterioration include the release of large amounts of C, earlier diurnal formation of clouds, and decreased surface temperatures. These effects decrease the recovery potential of Kobresia pastures and make them more vulnerable to anthropogenic pressure and climate change. Traditional migratory rangeland management was sustainable over millennia, and possibly still offers the best strategy to conserve and possibly increase C stocks in the Kobresia turf.
  •  
2.
  • Ehlers, Todd A., et al. (författare)
  • Past, present, and future geo-biosphere interactions on the Tibetan Plateau and implications for permafrost
  • 2022
  • Ingår i: Earth-Science Reviews. - : Elsevier BV. - 0012-8252. ; 234
  • Tidskriftsartikel (refereegranskat)abstract
    • Interactions between the atmosphere, biosphere, cryosphere, hydrosphere, and geosphere are most active in the critical zone, a region extending from the tops of trees to the top of unweathered bedrock. Changes in one or more of these spheres can result in a cascade of changes throughout the system in ways that are often poorly understood. Here we investigate how past and present climate change have impacted permafrost, hydrology, and ecosystems on the Tibetan Plateau. We do this by compiling existing climate, hydrologic, cryosphere, biosphere, and geologic studies documenting change over decadal to glacial-interglacial timescales and longer. Our emphasis is on showing present-day trends in environmental change and how plateau ecosystems have largely flourished under warmer and wetter periods in the geologic past. We identify two future pathways that could lead to either a favorable greening or unfavorable degradation and desiccation of plateau ecosystems. Both paths are plausible given the available evidence. We contend that the key to which pathway future generations experience lies in what, if any, human intervention measures are implemented. We conclude with suggested management strategies that can be implemented to facilitate a future greening of the Tibetan Plateau.
  •  
3.
  • Ingrisch, Johannes, et al. (författare)
  • Carbon pools and fluxes in a Tibetan alpine Kobresia pygmaea pasture partitioned by coupled eddy-covariance measurements and 13CO2 pulse labeling
  • 2015
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 1879-1026 .- 0048-9697. ; 505, s. 1213-1224
  • Tidskriftsartikel (refereegranskat)abstract
    • The Tibetan highlands host the largest alpine grassland ecosystems worldwide, bearing soils that store substantial stocks of carbon (C) that are very sensitive to land use changes. This study focuses on the cycling of photoassimilated C within a Kobresia pygmaea pasture, the dominating ecosystems on the Tibetan highlands. We investigated short-term effects of grazing cessation and the role of the characteristic Kobresia root turf on C fluxes and belowground C turnover. By combining eddy-covariance measurements with 13CO2 pulse labeling we applied a powerful new approach to measure absolute fluxes of assimilates within and between various pools of the plant-soil-atmosphere system. The roots and soil each store roughly 50% of the overall C in the system (76 Mg C ha−1), with only a minor contribution from shoots, which is also expressed in the root:shoot ratio of 90. During June and July the pasture acted as a weak C sink with a strong uptake of approximately 2 g C m−2 d−1 in the first half of July. The root turf was the main compartment for the turnover of photoassimilates, with a subset of highly dynamic roots (mean residence time 20 days), and plays a key role for the C cycling and C storage in this ecosystem. The short-termgrazing cessation only affected aboveground biomass but not ecosystem scale C exchange or assimilate allocation into roots and soil.
  •  
4.
  • Coners, Heinz, et al. (författare)
  • Evapotranspiration and water balance of high-elevation grassland on the Tibetan Plateau
  • 2016
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694. ; 533, s. 557-566
  • Tidskriftsartikel (refereegranskat)abstract
    • High-elevation grasslands of the Cyperaceae Kobresia pygmaea cover nearly half a million km2 on the Tibetan Plateau. As a consequence of climate change, precipitation patterns in this monsooninfluenced region may change with possible consequences for grassland productivity. Yet, not much is known about the water cycle in this second largest alpine ecosystem of the world. We measured the evapotranspiration of a high-elevation Kobresia pasture system at 4400 m a.s.l. in the south-eastern part of the plateau in two summers using three different approaches, weighable micro-lysimeters, eddy covariance measurements, and water balance modeling with the soil–plant–atmosphere transfer model SEWAB. In good agreement among the three approaches, we found ET rates of 4–6 mm d-1 in moist summer periods (June–August) and 2mmd-1 in dry periods, despite the high elevation and a leaf area index of only 1. Measured ET rates were comparable to rates reported from alpine grasslands at 1500–2500 m a.s.l. in temperate mountains, and also matched ET rates of managed lowland grasslands in the temperate zone. At the study site with 430 mm annual precipitation, low summer rainfall reduced ET significantly and infiltration into the subsoil occurred only in moist periods. Our results show that the evapotranspiration of high-elevation grasslands at 4400 m can be as high as in lowland grasslands despite large elevational changes in abiotic and biotic drivers of ET, and periodic water shortage is likely to influence large parts of the Tibetan Kobresia pastures.
  •  
5.
  • Gil-Romera, Graciela, et al. (författare)
  • Long-term fire resilience of the Ericaceous Belt, Bale Mountains, Ethiopia
  • 2019
  • Ingår i: Biology Letters. - : The Royal Society. - 1744-9561 .- 1744-957X. ; 15:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Fire is the most frequent disturbance in the Ericaceous Belt (ca 3000-1300 m.a.s.l.), one of the most important plant communities of tropical African mountains. Through resprouting after fire, Erica establishes a positive fire feedback under certain burning regimes. However, present-day human activity in the Bale Mountains of Ethiopia includes fire and grating systems that may have a negative impact on the resilience of the ericaceous ecosystem. Current knowledge of Erica-fire relationships is based on studies of modern vegetation, lacking a longer time perspective that can shed light on baseline conditions for the fire feedback. We hypothesite that fire has influenced Erica communities in the Bale Mountains at millennial time-scales. To test this, we (1) identity the tire history ot the Bale Mountains through a pollen and charcoal record from Garba Guracha, a lake at 3950 m.a.s.l., and (2) describe the long-term bidirectional feedback between wildfire and Erica, which may control the ecosystem's resilience. Our results support fire occurrence in the area since ca 14 000 years ago, with particularly intense burning during the early Holocene, 10.8-6.0 cal ka BP. We show that a positive feedback between Erica abundance and fire occurrence was in operation throughout the Lateglacial and Holocene, and interpret the Ericaceous Bolt of the Ethiopian mountains as a long-term fire resilient ecosystem. We propose that controlled burning should be an integral part of landscape management in the Bale Mountains National Park.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy