SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mihalopoulos Nikolaos) "

Sökning: WFRF:(Mihalopoulos Nikolaos)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Skoulikidis, Nikolaos Theodor, et al. (författare)
  • The LTER-Greece Environmental Observatory Network : Design and Initial Achievements
  • 2021
  • Ingår i: Water. - : MDPI AG. - 2073-4441. ; 13:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Five years after its establishment (2016), the LTER-Greece network outlines its vision, aims, objectives and its achievements through a series of case studies. The network consists of eight observatories, focusing on innovative research topics, aiming to be both cooperative and complementary, while currently being in the process of expanding. LTER-Greece acknowledges the complexity of ecosystems and the fact that effective management of natural resources may only be achieved by addressing every sector of a nexus system in order to understand inter-dependencies, thus accounting for solutions that promote resilience. Hence, LTER-Greece focuses on the holistic study of the water-environment-ecosystem-food-energy-society nexus, in order to face environmental and socio-ecological challenges at local and global scales, particularly climate change, biodiversity loss, pollution, natural disasters and unsustainable water and land management. Framed around five research pillars, monitoring and research targets nine research hypotheses related to climate change, environmental management, socio-ecology and economics, biodiversity and environmental process dynamics. As environmental monitoring and related research and conservation in Greece face critical shortcomings, LTER-Greece envisages confronting these gaps and contributing with interdisciplinary solutions to the current and upcoming complex environmental challenges.
  •  
2.
  • Alastuey, Andres, et al. (författare)
  • Geochemistry of PM10 over Europe during the EMEP intensive measurement periods in summer 2012 and winter 2013
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:10, s. 6107-6129
  • Tidskriftsartikel (refereegranskat)abstract
    • The third intensive measurement period (IMP) organised by the European Monitoring and Evaluation Programme (EMEP) under the UNECE CLTRAP took place in summer 2012 and winter 2013, with PM10 filter samples concurrently collected at 20 (16 EMEP) regional background sites across Europe for subsequent analysis of their mineral dust content. All samples were analysed by the same or a comparable methodology. Higher PM10 mineral dust loadings were observed at most sites in summer (0.5-10aEuro-A mu gaEuro-m(-3)) compared to winter (0.2-2aEuro-A mu gaEuro-m(-3)), with the most elevated concentrations in the southern- and easternmost countries, accounting for 20-40aEuro-% of PM10. Saharan dust outbreaks were responsible for the high summer dust loadings at western and central European sites, whereas regional or local sources explained the elevated concentrations observed at eastern sites. The eastern Mediterranean sites experienced elevated levels due to African dust outbreaks during both summer and winter. The mineral dust composition varied more in winter than in summer, with a higher relative contribution of anthropogenic dust during the former period. A relatively high contribution of K from non-mineral and non-sea-salt sources, such as biomass burning, was evident in winter at some of the central and eastern European sites. The spatial distribution of some components and metals reveals the influence of specific anthropogenic sources on a regional scale: shipping emissions (V, Ni, and SO42-) in the Mediterranean region, metallurgy (Cr, Ni, and Mn) in central and eastern Europe, high temperature processes (As, Pb, and SO42-) in eastern countries, and traffic (Cu) at sites affected by emissions from nearby cities.
  •  
3.
  • Kalivitis, Nikos, et al. (författare)
  • Formation and growth of atmospheric nanoparticles in the eastern Mediterranean : Results from long-term measurements and process simulations
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:4, s. 2671-2686
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric new particle formation (NPF) is a common phenomenon all over the world. In this study we present the longest time series of NPF records in the eastern Mediterranean region by analyzing 10 years of aerosol number size distribution data obtained with a mobility particle sizer. The measurements were performed at the Finokalia environmental research station on Crete, Greece, during the period June 2008-June 2018. We found that NPF took place on 27 % of the available days, undefined days were 23 % and non-event days 50 %. NPF is more frequent in April and May probably due to the terrestrial biogenic activity and is less frequent in August. Throughout the period under study, nucleation was observed also during the night. Nucleation mode particles had the highest concentration in winter and early spring, mainly because of the minimum sinks, and their average contribution to the total particle number concentration was 8 %. Nucleation mode particle concentrations were low outside periods of active NPF and growth, so there are hardly any other local sources of sub-25 nm particles. Additional atmospheric ion size distribution data simultaneously collected for more than 2 years were also analyzed. Classification of NPF events based on ion spectrometer measurements differed from the corresponding classification based on a mobility spectrometer, possibly indicating a different representation of local and regional NPF events between these two measurement data sets. We used the MALTE-Box model for simulating a case study of NPF in the eastern Mediterranean region. Monoterpenes contributing to NPF can explain a large fraction of the observed NPF events according to our model simulations. However the adjusted parameterization resulting from our sensitivity tests was significantly different from the initial one that had been determined for the boreal environment.
  •  
4.
  • Laj, Paolo, et al. (författare)
  • A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:8, s. 4353-4392
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system.
  •  
5.
  • Mayer, Ludovic, et al. (författare)
  • Widespread Pesticide Distribution in the European Atmosphere Questions their Degradability in Air
  • 2024
  • Ingår i: Environmental Science and Technology. - 0013-936X. ; 58:7, s. 3342-3352
  • Tidskriftsartikel (refereegranskat)abstract
    • Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved.
  •  
6.
  • Nieminen, Tuomo, et al. (författare)
  • Global analysis of continental boundary layer new particle formation based on long-term measurements
  • 2018
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:19, s. 14737-14756
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric new particle formation (NPF) is an important phenomenon in terms of global particle number concentrations. Here we investigated the frequency of NPF, formation rates of 10 nm particles, and growth rates in the size range of 10-25 nm using at least 1 year of aerosol number size-distribution observations at 36 different locations around the world. The majority of these measurement sites are in the Northern Hemisphere. We found that the NPF frequency has a strong seasonal variability. At the measurement sites analyzed in this study, NPF occurs most frequently in March-May (on about 30 % of the days) and least frequently in December-February (about 10 % of the days). The median formation rate of 10 nm particles varies by about 3 orders of magnitude (0.01-10 cm(-3) s(-1)) and the growth rate by about an order of magnitude (1-10 nm h(-1)). The smallest values of both formation and growth rates were observed at polar sites and the largest ones in urban environments or anthropogenically influenced rural sites. The correlation between the NPF event frequency and the particle formation and growth rate was at best moderate among the different measurement sites, as well as among the sites belonging to a certain environmental regime. For a better understanding of atmospheric NPF and its regional importance, we would need more observational data from different urban areas in practically all parts of the world, from additional remote and rural locations in North America, Asia, and most of the Southern Hemisphere (especially Australia), from polar areas, and from at least a few locations over the oceans.
  •  
7.
  • Schmale, Julia, et al. (författare)
  • Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition
  • 2017
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.
  •  
8.
  • Schmale, Julia, et al. (författare)
  • Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:4, s. 2853-2881
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles 20nm) across the range of 0.1 to 1.0% supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on -Köhler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of . The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. Information on CCN number concentrations at many locations is important to better characterise ACI and their radiative forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating migrating-CCNCs to conduct collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of long-term measurements can be achieved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy