SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mikhaylova Daria) "

Sökning: WFRF:(Mikhaylova Daria)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brändström, U., et al. (författare)
  • Results from the intercalibration of optical low light calibration sources 2011
  • 2012
  • Ingår i: Geoscientific Instrumentation, Methods and Data Systems. - : Copernicus GmbH. - 2193-0856 .- 2193-0864. ; 1:1, s. 43-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the 38th Annual European Meeting onAtmospheric Studies by Optical Methods in Siuntio in Finland,an intercalibration workshop for optical low light calibrationsources was held in Sodankyl¨a, Finland. The mainpurpose of this workshop was to provide a comparable scalefor absolute measurements of aurora and airglow. All sourcesbrought to the intercalibration workshop were compared tothe Fritz Peak reference source using the Lindau CalibrationPhotometer built by Wilhelm Barke and Hans Lauche in1984. The results were compared to several earlier intercalibrationworkshops. It was found that most sources were fairlystable over time, with errors in the range of 5–25 %. To furthervalidate the results, two sources were also intercalibratedat UNIS, Longyearbyen, Svalbard. Preliminary analysis indicatesagreement with the intercalibration in Sodankyl¨a withinabout 15–25 %.
  •  
2.
  • Dalin, Peter A., et al. (författare)
  • Wave influence on polar mesosphere summer echoes above Wasa : experimental and model studies
  • 2012
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 30:8, s. 1143-1157
  • Tidskriftsartikel (refereegranskat)abstract
    • Comprehensive analysis of the wave activity in the Antarctic summer mesopause is performed using polar mesospheric summer echoes (PMSE) measurements for December 2010–January 2011. The 2-day planetary wave is a statistically significant periodic oscillation in the power spectrum density of PMSE power. The strongest periodic oscillation in the power spectrum belongs to the diurnal solar tide; the semi-diurnal solar tide is found to be a highly significant harmonic oscillation as well. The inertial-gravity waves are extensively studied by means of PMSE power and wind components. The strongest gravity waves are observed at periods of about 1, 1.4, 2.5 and 4 h, with characteristic horizontal wavelengths of 28, 36, 157 and 252 km, respectively. The gravity waves propagate approximately in the west-east direction over Wasa (Antarctica). A detailed comparison between theoretical and experimental volume reflectivity of PMSE, measured at Wasa, is made. It is demonstrated that a new expression for PMSE reflectivity derived by Varney et al. (2011) is able to adequately describe PMSE profiles both in the magnitude and in height variations. The best agreement, within 30%, is achieved when mean values of neutral atmospheric parameters are utilized. The largest contribution to the formation and variability of the PMSE layer is explained by the ice number density and its height gradient, followed by wave-induced perturbations in buoyancy period and the turbulent energy dissipation rate
  •  
3.
  • Kirkwood, Sheila, et al. (författare)
  • Independent Calibration of Radar Reflectivities Using Radiosondes: Application To ESRAD
  • 2011
  • Ingår i: Proceedings of the ‘20th ESA Symposium on European Rocket and Balloon Programmes and Related Research’. ; , s. 425-429
  • Konferensbidrag (refereegranskat)abstract
    • A large number of empirical and theoretical studies haveshown that radar reflectivity from the atmosphere at 50MHz is proportional to the mean vertical gradient of therefractive index. Up to 30 km height the refractive indexis determined by temperature, pressure and humidityprofiles, which can readily be measured by radiosondes.In practice, humidity becomes unimportant abovethe mid-troposhere. The coefficient of proportionality betweenradar reflectivity and mean refractive index gradientshould, in principle, depend on the fine-scale structureof refractive index fluctuations. However, recent empiricalevidence shows that the coefficient varies very littlebetween widely different meteorological conditions andbetween radars in very different locations (Esrange, tropicalIndia, Antarctica). This means we can use meanprofiles of refractive index, measured by radiosondes, asan independent method to provide continuous calibrationof radar reflectivity and to cross-calibrate between differentradars without the need to interrupt operations for thekind of engineering tests which are usually used for calibration.We show how this can be applied for long-termcalibration of the 52 MHz atmospheric radar at Esrange,ESRAD.The observed invariability of the coefficient of proportionalityalso poses an intriguing question as to how it canbe explained. High-resolution sondes, constant-heightsondes, and UAV’s are suggested as suitable platformsfor further study of the radar scattering mechanisms.
  •  
4.
  • Kirkwood, Sheila, et al. (författare)
  • Response of polar mesosphere summer echoes to geomagnetic disturbances in the Southern and Northern Hemispheres : The importance of nitric oxide
  • 2013
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 31:2, s. 333-347
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationship between polar mesosphere summer echoes (PMSE) and geomagnetic disturbances (represented by magnetic I K indices) is examined. Calibrated PMSE reflectivities for the period May 2006-February 2012 are used from two 52.0/54.5 MHz radars located in Arctic Sweden (68 N, geomagnetic latitude 65 ) and at two different sites in Queen Maud Land, Antarctica (73/72 S, geomagnetic latitudes 62/63 ). In both the Northern Hemisphere (NH) and the Southern Hemisphere (SH) there is a strong increase in mean PMSE reflectivity between quiet and disturbed geomagnetic conditions. Mean volume reflectivities are slightly lower at the SH locations compared to the NH, but the position of the peak in the lognormal distribution of PMSE reflectivities is close to the same at both NH and SH locations, and varies only slightly with magnetic disturbance level. Differences between the sites, and between geomagnetic disturbance levels, are primarily due to differences in the high-reflectivity tail of the distribution. PMSE occurrence rates are essentially the same at both NH and SH locations during most of the PMSE season when a sufficiently low detection threshold is used so that the peak in the lognormal distribution is included. When the local-time dependence of the PMSE response to geomagnetic disturbance level is considered, the response in the NH is found to be immediate at most local times, but delayed by several hours in the afternoon sector and absent in the early evening. At the SH sites, at lower magnetic latitude, there is a delayed response (by several hours) at almost all local times. At the NH (auroral zone) site, the dependence on magnetic disturbance is highest during evening-to-morning hours. At the SH (sub-auroral) sites the response to magnetic disturbance is weaker but persists throughout the day. While the immediate response to magnetic activity can be qualitatively explained by changes in electron density resulting from energetic particle precipitation, the delayed response can largely be explained by changes in nitric oxide concentrations. Observations of nitric oxide concentration at PMSE heights by the Odin satellite support this hypothesis. Sensitivity to geomagnetic disturbances, including nitric oxide produced during these disturbances, can explain previously reported differences between sites in the auroral zone and those at higher or lower magnetic latitudes. The several-day lifetime of nitric oxide can also explain earlier reported discrepancies between high correlations for average conditions (year-by-year PMSE reflectivities and indices) and low correlations for minute-to-day timescales
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy