SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mikkonen K.S.) "

Sökning: WFRF:(Mikkonen K.S.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carvalho, D. M. D., et al. (författare)
  • Active role of lignin in anchoring wood-based stabilizers to the emulsion interface
  • 2021
  • Ingår i: Green Chemistry. - : Royal Society of Chemistry (RSC). - 1463-9262 .- 1463-9270. ; 23:22, s. 9084-9098
  • Tidskriftsartikel (refereegranskat)abstract
    • Hemicellulose-rich wood extracts show efficient capacity to adsorb at emulsion interfaces and stabilize them. Their functionality is enhanced by lignin moieties accompanying the hemicellulose structures, in the form of lignin-carbohydrate complexes (LCCs) and, potentially, other non-covalent associations. The formation and stability of emulsions is determined by their interfacial regions. These are largely unexplored assemblies when formed from natural stabilizers with a complex chemical composition. Understanding the structure of the interfacial region could facilitate both designing the extraction processes of abundant biomasses and unraveling a valuable industrial application potential for the extracts. Herein, we characterized the LCCs from the interface of oil-in-water emulsions stabilized by galactoglucomannan (GGM) or glucuronoxylan (GX)-rich wood extracts, using two-dimensional nuclear magnetic resonance (NMR) spectroscopy analysis. The type of covalent linkage between residual lignin and hemicelluloses determined their partitioning between the continuous and interfacial emulsion phases. Benzylether structures, only found in the interface, were suggested to participate in the physical stabilization of the emulsion droplets. In turn, the phenylglycosides, preferentially observed in the continuous phase, were suggested to interact with adsorbed stabilizers by electrostatic interaction. More hydrophobic lignin structures, such as guaiacyl lignin type, dibenzodioxocin substructures, and certain end groups also contributed to droplet stabilization. The elucidation of such attributes is of paramount importance for the biorefinery industry, enabling the optimization of extraction processes for the preparation of wood-based stabilizers and designed interfaces for novel and sustainable emulsion systems.
  •  
2.
  •  
3.
  •  
4.
  • Mikkonen, K. S., et al. (författare)
  • Glucomannan composite films with cellulose nanowhiskers
  • 2010
  • Ingår i: Cellulose. - : Springer Science and Business Media LLC. - 0969-0239 .- 1572-882X. ; 17:1, s. 69-81
  • Tidskriftsartikel (refereegranskat)abstract
    • Spruce galactoglucomannans (GGM) and konjac glucomannan (KGM) were mixed with cellulose nanowhiskers (CNW) to form composite films. Remarkable effects of CNW on the appearance of the films were detected when viewed with regular and polarizing optical microscopes and with a scanning electron microscope. Addition of CNW to KGM-based films induced the formation of fiberlike structures with lengths of several millimeters. In GGM-based films, rodlike structures with lengths of several tens of micrometers were formed. The degree of crystallinity of mannan in the plasticized KGM-based films increased slightly when CNW were added, from 25 to 30%. The tensile strength of the KGM-based films not containing glycerol increased with increasing CNW content from 57 to 74 MPa, but that of glycerol-plasticized KGM and GGM films was not affected. Interestingly, the notable differences in the film structure did not appear to be related to the thermal properties of the films.
  •  
5.
  •  
6.
  •  
7.
  • Stevanic, J. S., et al. (författare)
  • Bacterial Nanocellulose-Reinforced Arabinoxylan Films MELL TE, 1964, V19, P247
  • 2011
  • Ingår i: Journal of Applied Polymer Science. - : Wiley. - 1097-4628 .- 0021-8995. ; 122:2, s. 1030-1039
  • Tidskriftsartikel (refereegranskat)abstract
    • There is an increasing interest in substituting today's films for food packaging applications with films based on renewable resources. For this purpose, rye arabinoxylans, unmodified and enzymatically debranched, were studied for the preparation of neat films and composite films reinforced with bacterial cellulose (BC). Mixing in a homogenizer produced optically transparent, uniform films. Physical and mechanical characteristics of such films are here reported. Debranching of the arabinoxylan caused an increase in its crystallinity of 20%. Debranching as well as reinforcement with BC resulted in a decrease of the moisture sorption of the films. The debranching also resulted in a reduced breaking strain while the reinforcement with BC increased stiffness and strength of the films. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 122: 1030-1039, 2011
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy