SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mileti E) "

Sökning: WFRF:(Mileti E)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Yu, NY, et al. (författare)
  • Acute doses of caffeine shift nervous system cell expression profiles toward promotion of neuronal projection growth
  • 2017
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1, s. 11458-
  • Tidskriftsartikel (refereegranskat)abstract
    • Caffeine is a widely consumed psychoactive substance, but little is known about the effects of caffeine stimulation on global gene expression changes in neurons. Here, we conducted gene expression profiling of human neuroepithelial stem cell-derived neurons, stimulated with normal consumption levels of caffeine (3 μM and 10 μM), over a period of 9 h. We found dosage-dependent activation of immediate early genes after 1 h. Neuronal projection development processes were up-regulated and negative regulation of axon extension processes were down-regulated at 3 h. In addition, genes involved in extracellular matrix organization, response for wound healing, and regulation of immune system processes were down-regulated by caffeine at 3 h. This study identified novel genes within the neuronal projection guidance pathways that respond to acute caffeine stimulation and suggests potential mechanisms for the effects of caffeine on neuronal cells.
  •  
5.
  • Backdahl, J., et al. (författare)
  • Long-Term Improvement in Aortic Pulse Wave Velocity After Weight Loss Can Be Predicted by White Adipose Tissue Factors
  • 2018
  • Ingår i: American Journal of Hypertension. - : Oxford University Press (OUP). - 0895-7061 .- 1941-7225. ; 31:4, s. 450-457
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND Arterial stiffness, measured by pulse wave velocity (PWV), is linked to obesity, cardiovascular disease, and all-cause mortality. Short-term weight loss improves PWV, but the long-term effects are unknown. We investigated the effect of pronounced long-term weight loss on PWV and whether anthropometric/metabolic parameters and/or white adipose tissue (WAT) phenotype could predict this change in PWV. Eighty-two obese subjects were examined before and 2 years after Roux-en-Y gastric bypass. Analyses included anthropometrics, routine clinical chemistry, and hyperinsulinemic-euglycemic clamp. Arterial stiffness was measured as aortic PWV (aPWV) using the Arteriograph device. WAT mass and distribution were assessed by dual-X-ray absorptiometry. Baseline visceral and subcutaneous WAT samples were obtained to measure adipocyte cell size. Transcriptomic profiling of subcutaneous WAT was performed in a subset of subjects (n = 30). At the 2-year follow-up, there were significant decreases in body mass index (39.4 +/- 3.5 kg/m(2) vs. 26.6 +/- 3.4 kg/m(2); P < 0.0001) and aPWV (7.8 +/- 1.5 m/s vs. 7.2 +/- 1.4 m/s; P = 0.006). Multiple regression analyses showed that baseline subcutaneous adipocyte volume was associated with a reduction in aPWV (P = 0.014), after adjusting for confounders. Expression analyses of 52 genes implicated in arterial stiffness showed that only one, COL4A1, independently predicted improvements in aPWV after adjusting for confounders (P = 0.006). Bariatric surgery leads to long-term reduction in aPWV. This improvement can be independently predicted by subcutaneous adipocyte volume and WAT COL4A1 expression, which suggests that subcutaneous WAT has a role in regulating aPWV.
  •  
6.
  • Mileti, E, et al. (författare)
  • Human White Adipose Tissue Displays Selective Insulin Resistance in the Obese State
  • 2021
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 70:7, s. 1486-1497
  • Tidskriftsartikel (refereegranskat)abstract
    • Selective hepatic insulin resistance is a feature of obesity and type 2 diabetes. Whether similar mechanisms operate in white adipose tissue (WAT) of those with obesity and to what extent these are normalized by weight loss are unknown. We determined insulin sensitivity by hyperinsulinemic euglycemic clamp and insulin response in subcutaneous WAT by RNA sequencing in 23 women with obesity before and 2 years after bariatric surgery. To control for effects of surgery, women postsurgery were matched to never-obese women. Multidimensional analyses of 138 samples allowed us to classify the effects of insulin into three distinct expression responses: a common set was present in all three groups and included genes encoding several lipid/cholesterol biosynthesis enzymes; a set of obesity-attenuated genes linked to tissue remodeling and protein translation was selectively regulated in the two nonobese states; and several postobesity-enriched genes encoding proteins involved in, for example, one-carbon metabolism were only responsive to insulin in the women who had lost weight. Altogether, human WAT displays a selective insulin response in the obese state, where most genes are normalized by weight loss. This comprehensive atlas provides insights into the transcriptional effects of insulin in WAT and may identify targets to improve insulin action.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy