SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Militzer Christian) "

Sökning: WFRF:(Militzer Christian)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahvenniemi, Esko, et al. (författare)
  • Recommended reading list of early publications on atomic layer deposition-Outcome of the "Virtual Project on the History of ALD"
  • 2017
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 35:1
  • Forskningsöversikt (refereegranskat)abstract
    • Atomic layer deposition (ALD), a gas-phase thin film deposition technique based on repeated, self-terminating gas-solid reactions, has become the method of choice in semiconductor manufacturing and many other technological areas for depositing thin conformal inorganic material layers for various applications. ALD has been discovered and developed independently, at least twice, under different names: atomic layer epitaxy (ALE) and molecular layering. ALE, dating back to 1974 in Finland, has been commonly known as the origin of ALD, while work done since the 1960s in the Soviet Union under the name "molecular layering" (and sometimes other names) has remained much less known. The virtual project on the history of ALD (VPHA) is a volunteer-based effort with open participation, set up to make the early days of ALD more transparent. In VPHA, started in July 2013, the target is to list, read and comment on all early ALD academic and patent literature up to 1986. VPHA has resulted in two essays and several presentations at international conferences. This paper, based on a poster presentation at the 16th International Conference on Atomic Layer Deposition in Dublin, Ireland, 2016, presents a recommended reading list of early ALD publications, created collectively by the VPHA participants through voting. The list contains 22 publications from Finland, Japan, Soviet Union, United Kingdom, and United States. Up to now, a balanced overview regarding the early history of ALD has been missing; the current list is an attempt to remedy this deficiency.
  •  
2.
  • Huang, Jing-Jia, et al. (författare)
  • Conformal and superconformal chemical vapor deposition of silicon carbide coatings
  • 2022
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : A V S AMER INST PHYSICS. - 0734-2101 .- 1520-8559. ; 40:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The approaches to conformal and superconformal deposition developed by Abelson and Girolami for a low-temperature, low-pressure chemical vapor deposition (CVD) setting relevant for electronic materials in micrometer or submicrometer scale vias and trenches, are tested here in a high-temperature, moderate pressure CVD setting relevant for hard coatings in millimeter-scale trenches. Conformal and superconformal deposition of polycrystalline silicon carbide (SiC) can be accomplished at deposition temperatures between 950 and 1000 degrees C with precursor partial pressure higher than 20 Pa and an optional minor addition of HCl as a growth inhibitor. The conformal deposition at low temperatures is ascribed to slower kinetics of the precursor consumption along the trench depth, whereas the impact of high precursor partial pressure and addition of inhibitor is attributable to surface site blocking. With the slower kinetics and the site blocking from precursor saturation leading the growth to nearly conformal and the possibly preferential inhibition effect near the opening than at the depth, a superconformal SiC coating with 2.6 times higher thickness at the bottom compared to the top of a 1 mm trench was achieved. Published under an exclusive license by the AVS.
  •  
3.
  • Huang, Jing-Jia, et al. (författare)
  • Controlled CVD Growth of Highly ⟨111⟩-Oriented 3C-SiC
  • 2022
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 126:23, s. 9918-9925
  • Tidskriftsartikel (refereegranskat)abstract
    • Highly ⟨111⟩-oriented 3C-SiC coatings with a distinct surface morphology consisting of hexagonally shaped pyramidal crystals were prepared by chemical vapor deposition (CVD) using silicon tetrachloride (SiCl4) and toluene (C7H8) at T ≤ 1250 °C and ptot = 10 kPa. In contrast, similar deposition conditions, with methane (CH4) as the carbon precursor, resulted in randomly oriented 3C-SiC coatings with a cauliflower-like surface of SiC crystallites. No excess carbon was detected in the highly ⟨111⟩-oriented 3C-SiC samples despite the use of aromatic hydrocarbons. The difference in the preferred growth orientation of the 3C-SiC coatings deposited by using C7H8 and CH4 as the carbon precursors was explained via quantum chemical calculations of binding energies on various crystal planes. The adsorption energy of C6H6 on the SiC (111) plane was 6 times higher than that on the (110) plane. On the other hand, CH3 exhibited equally strong adsorption on both planes. This suggested that the highly ⟨111⟩-oriented 3C-SiC growth with C7H8 as the carbon precursor, where both C6H6 and CH3 were considered the main active carbon-containing film forming species, was due to the highly preferred adsorption on the (111) plane, while the lower surface energy of the (110) plane controlled the growth orientation in the CH4 process, in which only CH3 contributed to the film deposition. 
  •  
4.
  • Huang, Jing-Jia, 1990-, et al. (författare)
  • Growth of silicon carbide multilayers with varying preferred growth orientation
  • 2022
  • Ingår i: Surface & Coatings Technology. - : Elsevier. - 0257-8972 .- 1879-3347. ; 447
  • Tidskriftsartikel (refereegranskat)abstract
    • SiC multilayer coatings were deposited via thermal chemical vapor deposition (CVD) using silicon tetrachloride (SiCl4) and various hydrocarbons under identical growth conditions, i.e. at 1100 °C and 10 kPa. The coatings consisted of layers whose preferred growth orientation alternated between random and highly 〈111〉-oriented. The randomly oriented layers were prepared with either methane (CH4) or ethylene (C2H4) as carbon precursor, whereas the highly 〈111〉-oriented layers were grown utilizing toluene (C7H8) as carbon precursor. In this work, we demonstrated how to fabricate multilayer coatings with different growth orientations by merely switching between hydrocarbons. Moreover, the success in depositing multilayer coatings on both flat and structured graphite substrates has strengthened the assumption proposed in our previous study that the growth of highly 〈111〉-oriented SiC coatings using C7H8 was primarily driven by chemical surface reactions.
  •  
5.
  • Huang, Jing-Jia, et al. (författare)
  • Superconformal silicon carbide coatings via precursor pulsed chemical vapor deposition
  • 2023
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : A V S AMER INST PHYSICS. - 0734-2101 .- 1520-8559. ; 41:3
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, silicon carbide (SiC) coatings were successfully grown by pulsed chemical vapor deposition (CVD). The precursors silicon tetrachloride (SiCl4) and ethylene (C2H4) were not supplied in a continuous flow but were pulsed alternately into the growth chamber with H-2 as a carrier and a purge gas. A typical pulsed CVD cycle was SiCl4 pulse-H-2 purge-C2H4 pulse-H-2 purge. This led to growth of superconformal SiC coatings, which could not be obtained under similar process conditions using a constant flow CVD process. We propose a two-step framework for SiC growth via pulsed CVD. During the SiCl4 pulse, a layer of Si is deposited. In the following C2H4 pulse, this Si layer is carburized, and SiC is formed. The high chlorine surface coverage after the SiCl4 pulse is believed to enable superconformal growth via a growth inhibition effect.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy