SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Minarik David) "

Sökning: WFRF:(Minarik David)

  • Resultat 1-10 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ballantyne, Kaye N., et al. (författare)
  • Toward Male Individualization with Rapidly Mutating Y-Chromosomal Short Tandem Repeats
  • 2014
  • Ingår i: Human Mutation. - : John Wiley & Sons. - 1059-7794 .- 1098-1004. ; 35:8, s. 1021-1032
  • Tidskriftsartikel (refereegranskat)abstract
    • Relevant for various areas of human genetics, Y-chromosomal short tandem repeats (Y-STRs) are commonly used for testing close paternal relationships among individuals and populations, and for male lineage identification. However, even the widely used 17-loci Yfiler set cannot resolve individuals and populations completely. Here, 52 centers generated quality-controlled data of 13 rapidly mutating (RM) Y-STRs in 14,644 related and unrelated males from 111 worldwide populations. Strikingly, greater than99% of the 12,272 unrelated males were completely individualized. Haplotype diversity was extremely high (global: 0.9999985, regional: 0.99836-0.9999988). Haplotype sharing between populations was almost absent except for six (0.05%) of the 12,156 haplotypes. Haplotype sharing within populations was generally rare (0.8% nonunique haplotypes), significantly lower in urban (0.9%) than rural (2.1%) and highest in endogamous groups (14.3%). Analysis of molecular variance revealed 99.98% of variation within populations, 0.018% among populations within groups, and 0.002% among groups. Of the 2,372 newly and 156 previously typed male relative pairs, 29% were differentiated including 27% of the 2,378 father-son pairs. Relative to Yfiler, haplotype diversity was increased in 86% of the populations tested and overall male relative differentiation was raised by 23.5%. Our study demonstrates the value of RMY-STRs in identifying and separating unrelated and related males and provides a reference database.
  •  
2.
  • Anand, Aseem, et al. (författare)
  • A preanalytic validation study of automated bone scan index : Effect on accuracy and reproducibility due to the procedural variabilities in bone scan image acquisition
  • 2016
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 2159-662X. ; 57:12, s. 1865-1871
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of the procedural variability in image acquisition on the quantitative assessment of bone scan is unknown. Here, we have developed and performed preanalytical studies to assess the impact of the variability in scanning speed and in vendor-specific γ-camera on reproducibility and accuracy of the automated bone scan index (BSI). Methods: Two separate preanalytical studies were performed: a patient study and a simulation study. In the patient study, to evaluate the effect on BSI reproducibility, repeated bone scans were prospectively obtained from metastatic prostate cancer patients enrolled in 3 groups (Grp). In Grp1, the repeated scan speed and the γ-camera vendor were the same as that of the original scan. In Grp2, the repeated scan was twice the speed of the original scan. In Grp3, the repeated scan used a different γ-camera vendor than that used in the original scan. In the simulation study, to evaluate the effect on BSI accuracy, bone scans of a virtual phantom with predefined skeletal tumor burden (phantom-BSI) were simulated against the range of image counts (0.2, 0.5, 1.0, and 1.5 million) and separately against the resolution settings of the γ-cameras. The automated BSI was measured with a computer-automated platform. Reproducibility was measured as the absolute difference between the repeated BSI values, and accuracy was measured as the absolute difference between the observed BSI and the phantom-BSI values. Descriptive statistics were used to compare the generated data. Results: In the patient study, 75 patients, 25 in each group, were enrolled. The reproducibility of Grp2 (mean ± SD, 0.35 ± 0.59) was observed to be significantly lower than that of Grp1 (mean ± SD, 0.10 ± 0.13; P < 0.0001) and that of Grp3 (mean ± SD, 0.09 ± 0.10; P < 0.0001). However, no significant difference was observed between the reproducibility of Grp3 and Grp1 (P = 0.388). In the simulation study, the accuracy at 0.5 million counts (mean ± SD, 0.57 ± 0.38) and at 0.2 million counts (mean ± SD, 4.67 ± 0.85) was significantly lower than that observed at 1.5 million counts (mean ± SD, 0.20 ± 0.26; P < 0.0001). No significant difference was observed in the accuracy data of the simulation study with vendor-specific γ-cameras (P 5 0.266). Conclusion: In this study, we observed that the automated BSI accuracy and reproducibility were dependent on scanning speed but not on the vendor-specific γ-cameras. Prospective BSI studies should standardize scanning speed of bone scans to obtain image counts at or above 1.5 million.
  •  
3.
  •  
4.
  • Anand, Aseem, et al. (författare)
  • Automated Bone Scan Index as a quantitative imaging biomarker in metastatic castration-resistant prostate cancer patients being treated with enzalutamide
  • 2016
  • Ingår i: EJNMMI Research. - : Springer. - 2191-219X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Having performed analytical validation studies, we are now assessing the clinical utility of the upgraded automated Bone Scan Index (BSI) in metastatic castration-resistant prostate cancer (mCRPC). In the present study, we retrospectively evaluated the discriminatory strength of the automated BSI in predicting overall survival (OS) in mCRPC patients being treated with enzalutamide.METHODS: Retrospectively, we included patients who received enzalutamide as a clinically approved therapy for mCRPC and had undergone bone scan prior to starting therapy. Automated BSI, prostate-specific antigen (PSA), hemoglobin (HgB), and alkaline phosphatase (ALP) were obtained at baseline. Change in automated BSI and PSA were obtained from patients who have had bone scan at week 12 of treatment follow-up. Automated BSI was obtained using the analytically validated EXINI Bone(BSI) version 2. Kendall's tau (τ) was used to assess the correlation of BSI with other blood-based biomarkers. Concordance index (C-index) was used to evaluate the discriminating strength of automated BSI in predicting OS.RESULTS: Eighty mCRPC patients with baseline bone scans were included in the study. There was a weak correlation of automated BSI with PSA (τ = 0.30), with HgB (τ = -0.17), and with ALP (τ = 0.56). At baseline, the automated BSI was observed to be predictive of OS (C-index 0.72, standard error (SE) 0.03). Adding automated BSI to the blood-based model significantly improved the C-index from 0.67 to 0.72, p = 0.017. Treatment follow-up bone scans were available from 62 patients. Both change in BSI and percent change in PSA were predictive of OS. However, the combined predictive model of percent PSA change and change in automated BSI (C-index 0.77) was significantly higher than that of percent PSA change alone (C-index 0.73), p = 0.041.CONCLUSIONS: The upgraded and analytically validated automated BSI was found to be a strong predictor of OS in mCRPC patients. Additionally, the change in automated BSI demonstrated an additive clinical value to the change in PSA in mCRPC patients being treated with enzalutamide.
  •  
5.
  • Andersson, Martin, et al. (författare)
  • An internal radiation dosimetry computer program, IDAC 2.0, for estimation of patient doses from radiopharmaceuticals
  • 2014
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press (OUP). - 0144-8420 .- 1742-3406. ; 162:3, s. 299-305
  • Tidskriftsartikel (refereegranskat)abstract
    • The internal dosimetry computer program internal dose assessment by computer (IDAC) for calculations of absorbed doses to organs and tissues as well as effective doses to patients from examinations with radiopharmaceuticals has been developed. The new version, IDAC2.0, incorporates the International Commission on Radiation Protection (ICRP)/ICRU computational adult male and female voxel phantoms and decay data from the ICRP publication 107. Instead of only 25 source and target regions, calculation can now be made with 63 source regions to 73 target regions. The major advantage of having the new phantom is that the calculations of the effective doses can be made with the latest tissue weighting factors of ICRP publication 103. IDAC2.0 uses the ICRP human alimentary tract (HAT) model for orally administrated activity and for excretion through the gastrointestinal tract and effective doses have been recalculated for radiopharmaceuticals that are orally administered. The results of the program are consistent with published data using the same specific absorption fractions and also compared with published data from the same computational phantoms but with segmentation of organs leading to another set of specific absorption fractions. The effective dose is recalculated for all the 34 radiopharmaceuticals that are administered orally and has been published by the ICRP. Using the new HAT model, new tissue weighting factors and the new adult computational voxel phantoms lead to an average effective dose of half of its earlier estimated value. The reduction mainly depends on electron transport simulations to walled organs and the transition from the stylised phantom with unrealistic interorgan distances to more realistic voxel phantoms.
  •  
6.
  • Andersson, Martin, et al. (författare)
  • An upgrade of the internal dosimetry computer program IDAC
  • 2012
  • Ingår i: Medical Physics in the Baltic States. - : Kaunas University of Technology. - 1822-5721. ; , s. 120-123
  • Konferensbidrag (refereegranskat)abstract
    • A full update of the internal dosimetry computer program IDAC has been conducted. The new update is based on new and more accurate computational phantoms to calculate effective dose and absorbed dose to organs and tissues. The new ICRP Adult Reference Computational Phantoms has been adopted as well as the latest of the ICRP standardized biokinetic models. The updated computer program includes a user-friendly graphical user interface.
  •  
7.
  • Andersson, Martin, et al. (författare)
  • Effective dose to adult patients from 338 radiopharmaceuticals estimated using ICRP biokinetic data, ICRP/ICRU computational reference phantoms and ICRP 2007 tissue weighting factors
  • 2014
  • Ingår i: EJNMMI Physics. - : Springer. - 2197-7364. ; 1:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Effective dose represents the potential risk to a population of stochastic effects of ionizing radiation (mainly lethal cancer). In recent years, there have been a number of revisions and updates influencing the way to estimate the effective dose. The aim of this work was to recalculate the effective dose values for the 338 different radiopharmaceuticals previously published by the International Commission on Radiological Protection (ICRP).Method: The new estimations are based on information on the cumulated activities per unit administered activity in various organs and tissues and for the various radiopharmaceuticals obtained from the ICRP publications 53, 80 and 106. The effective dose for adults was calculated using the new ICRP/International Commission on Radiation Units (ICRU) reference voxel phantoms and decay data from the ICRP publication 107. The ICRP human alimentary tract model has also been applied at the recalculations. The effective dose was calculated using the new tissue weighting factors from ICRP publications 103 and the prior factors from ICRP publication 60. The results of the new calculations were compared with the effective dose values published by the ICRP, which were generated with the Medical Internal Radiation Dose (MIRD) adult phantom and the tissue weighting factors from ICRP publication 60.Results: For 79% of the radiopharmaceuticals, the new calculations gave a lower effective dose per unit administered activity than earlier estimated. As a mean for all radiopharmaceuticals, the effective dose was 25% lower. The use of the new adult computational voxel phantoms has a larger impact on the change of effective doses than the change to new tissue weighting factors.Conclusion: The use of the new computational voxel phantoms and the new weighting factors has generated new effective dose estimations. These are supposed to result in more realistic estimations of the radiation risk to a population undergoing nuclear medicine investigations than hitherto available values.
  •  
8.
  • Andersson, Martin, et al. (författare)
  • Improved estimates of the radiation absorbed dose to the urinary bladder wall
  • 2014
  • Ingår i: Physics in Medicine and Biology. - : Institute of Physics Publishing (IOPP). - 0031-9155 .- 1361-6560. ; 59:9, s. 2173-2182
  • Tidskriftsartikel (refereegranskat)abstract
    • Specific absorbed fractions (SAFs) have been calculated as a function of the content in the urinary bladder in order to allow more realistic calculations of the absorbed dose to the bladder wall. The SAFs were calculated using the urinary bladder anatomy from the ICRP male and female adult reference computational phantoms. The urinary bladder and its content were approximated by a sphere with a wall of constant mass, where the thickness of the wall depended on the amount of urine in the bladder. SAFs were calculated for males and females with 17 different urinary bladder volumes from 10 to 800 mL, using the Monte Carlo computer program MCNP5, at 25 energies of mono-energetic photons and electrons ranging from 10 KeV to 10 MeV. The decay was assumed to be homogeneously distributed in the urinary bladder content and the urinary bladder wall, and the mean absorbed dose to the urinary bladder wall was calculated. The Monte Carlo simulations were validated against measurements made with thermoluminescent dosimeters. The SAFs obtained for a urine volume of 200 mL were compared to the values calculated for the urinary bladder wall using the adult reference computational phantoms. The mean absorbed dose to the urinary wall from F-18-FDG was found to be 77 mu Gy/MBq formales and 86 mu Gy/MBq for females, while for (99)mTc-DTPA the mean absorbed doses were 80 mu Gy/MBq for males and 86 mu Gy/MBq for females. Compared to calculations using a constant value of the SAF from the adult reference computational phantoms, the mean absorbed doses to the bladder wall were 60% higher for F-18-FDG and 30% higher for (99)mTc-DTPA using the new SAFs.
  •  
9.
  • Andersson, Martin, et al. (författare)
  • ORGAN DOSES AND EFFECTIVE DOSE FOR FIVE PET RADIOPHARMACEUTICALS
  • 2016
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press (OUP). - 1742-3406 .- 0144-8420. ; 169:1-4, s. 8-253
  • Tidskriftsartikel (refereegranskat)abstract
    • Diagnostic investigations with positron-emitting radiopharmaceuticals are dominated by (18)F-fluorodeoxyglucose ((18)F-FDG), but other radiopharmaceuticals are also commercially available or under development. Five of them, which are all clinically important, are (18)F-fluoride, (18)F-fluoroethyltyrosine ((18)F-FET), (18)F-deoxyfluorothymidine ((18)F-FLT), (18)F-fluorocholine ((18)F-choline) and (11)C-raclopride. To estimate the potential risk of stochastic effects (mainly lethal cancer) to a population, organ doses and effective dose values were updated for all five radiopharmaceuticals. Dose calculations were performed using the computer program IDAC2.0, which bases its calculations on the ICRP/ICRU adult reference voxel phantoms and the tissue weighting factors from ICRP publication 103. The biokinetic models were taken from ICRP publication 128. For organ doses, there are substantial changes. The only significant change in effective dose compared with previous estimations was a 46 % reduction for (18)F-fluoride. The estimated effective dose in mSv MBq(-1) was 1.5E-02 for (18)F-FET, 1.5E-02 for (18)F-FLT, 2.0E-02 for (18)F-choline, 9.0E-03 for (18)F-fluoride and 4.4E-03 for (11)C-raclopride.
  •  
10.
  • Bjöersdorff, Mimmi, et al. (författare)
  • Impact of penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm for 18 F-fluorocholine PET-CT regarding image quality and interpretation
  • 2019
  • Ingår i: EJNMMI Physics. - : Springer Science and Business Media LLC. - 2197-7364. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recently, the block-sequential regularized expectation maximization (BSREM) reconstruction algorithm was commercially introduced (Q.Clear, GE Healthcare, Milwaukee, WI, USA). However, the combination of noise-penalizing factor (β), acquisition time, and administered activity for optimal image quality has not been established for 18 F-fluorocholine (FCH). The aim was to compare image quality and diagnostic performance of different reconstruction protocols for patients with prostate cancer being examined with 18 F-FCH on a silicon photomultiplier-based PET-CT. Thirteen patients were included, injected with 4 MBq/kg, and images were acquired after 1 h. Images were reconstructed with frame durations of 1.0, 1.5, and 2.0 min using β of 150, 200, 300, 400, 500, and 550. An ordered subset expectation maximization (OSEM) reconstruction with a frame duration of 2.0 min was used for comparison. Images were quantitatively analyzed regarding standardized uptake values (SUV) in metastatic lymph nodes, local background, and muscle to obtain contrast-to-noise ratios (CNR) as well as the noise level in muscle. Images were analyzed regarding image quality and number of metastatic lymph nodes by two nuclear medicine physicians. Results: The highest median CNR was found for BSREM with a β of 300 and a frame duration of 2.0 min. The OSEM reconstruction had the lowest median CNR. Both the noise level and lesion SUV max decreased with increasing β. For a frame duration of 1.5 min, the median quality score was highest for β 400-500, and for a frame duration of 2.0 min the score was highest for β 300-500. There was no statistically significant difference in the number of suspected lymph node metastases between the different image series for one of the physicians, and for the other physician the number of lymph nodes differed only for one combination of image series. Conclusions: To achieve acceptable image quality at 4 MBq/kg 18 F-FCH, we propose using a β of 400-550 with a frame duration of 1.5 min. The lower β should be used if a high CNR is desired and the higher if a low noise level is important.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 42
Typ av publikation
tidskriftsartikel (38)
konferensbidrag (1)
doktorsavhandling (1)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (41)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Minarik, David (41)
Trägårdh, Elin (23)
Ljungberg, Michael (9)
Oddstig, Jenny (8)
Wollmer, Per (6)
Edenbrandt, Lars (6)
visa fler...
Leide-Svegborn, Sigr ... (6)
Andersson, Martin (5)
Mattsson, Sören (5)
Jögi, Jonas (5)
Johansson, Lennart (5)
Almquist, Helen (3)
Bjartell, Anders (3)
Olsson, Berit (3)
Anand, Aseem (3)
Enqvist, Olof, 1981 (3)
Morris, Michael J. (3)
Kaboteh, Reza (3)
Persson, Eva (2)
Strand, Sven-Erik (2)
Hindorf, Cecilia (2)
Larson, Steven M. (2)
Valind, Sven (2)
Diaz, Sandra (1)
Zackrisson, Sophia (1)
Riklund, Katrine (1)
Munck af Rosenschöld ... (1)
Enqvist, Olof (1)
Ulén, Johannes (1)
Kling, Daniel (1)
Wittrup, Anders (1)
Ceberg, Crister (1)
Lindén, Ola (1)
Josefsson, Andreas, ... (1)
Bjurberg, Maria (1)
Hedeer, Fredrik (1)
Lubberink, Mark (1)
Holmlund, Gunilla (1)
Reza Felix, Mariana (1)
Matsunaga, Naofumi (1)
Båth, Lena (1)
Sadik, May (1)
Gjertsson, Peter (1)
Lomsky, Milan (1)
Helgstrand, John T. (1)
Oturai, Peter S. (1)
Røder, Martin Andrea ... (1)
Lindgren Belal, Sara ... (1)
Tennvall, Jan (1)
Parson, Walther (1)
visa färre...
Lärosäte
Lunds universitet (41)
Umeå universitet (7)
Göteborgs universitet (5)
Chalmers tekniska högskola (3)
Linköpings universitet (2)
Karolinska Institutet (1)
Språk
Engelska (42)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (41)
Teknik (4)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy