SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mineta Katsuhiko) "

Sökning: WFRF:(Mineta Katsuhiko)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdel-Haleem, Alyaa M., et al. (författare)
  • Integrated Metabolic Modeling, Culturing, and Transcriptomics Explain Enhanced Virulence of Vibrio cholerae during Coinfection with Enterotoxigenic Escherichia coli
  • 2020
  • Ingår i: mSystems. - 2379-5077. ; 5:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene essentiality is altered during polymicrobial infections. Nevertheless, most studies rely on single-species infections to assess pathogen gene essentiality. Here, we use genome-scale metabolic models (GEMs) to explore the effect of coinfection of the diarrheagenic pathogen Vibrio cholerae with another enteric pathogen, enterotoxigenic Escherichia coli (ETEC). Model predictions showed that V. cholerae metabolic capabilities were increased due to ample cross-feeding opportunities enabled by ETEC. This is in line with increased severity of cholera symptoms known to occur in patients with dual infections by the two pathogens. In vitro co-culture systems confirmed that V. cholerae growth is enhanced in cocultures relative to single cultures. Further, expression levels of several V. cholerae metabolic genes were significantly perturbed as shown by dual RNA sequencing (RNAseq) analysis of its cocultures with different ETEC strains. A decrease in ETEC growth was also observed, probably mediated by nonmetabolic factors. Single gene essentiality analysis predicted conditionally independent genes that are essential for the pathogen's growth in both single-infection and coinfection scenarios. Our results reveal growth differences that are of relevance to drug targeting and efficiency in polymicrobial infections. IMPORTANCE Most studies proposing new strategies to manage and treat infections have been largely focused on identifying druggable targets that can inhibit a pathogen's growth when it is the single cause of infection. In vivo, however, infections can be caused by multiple species. This is important to take into account when attempting to develop or use current antibacterials since their efficacy can change significantly between single infections and coinfections. In this study, we used genome-scale metabolic models (GEMs) to interrogate the growth capabilities of Vibrio cholerae in single infections and coinfections with enterotoxigenic E. coli (ETEC), which cooccur in a large fraction of diarrheagenic patients. Coinfection model predictions showed that V. cholerae growth capabilities are enhanced in the presence of ETEC relative to V. cholerae single infection, through cross-fed metabolites made available to V. cholerae by ETEC. In vitro, cocultures of the two enteric pathogens further confirmed model predictions showing an increased growth of V. cholerae in coculture relative to V. cholerae single cultures while ETEC growth was suppressed. Dual RNAseq analysis of the cocultures also confirmed that the transcriptome of V. cholerae was distinct during coinfection compared to single-infection scenarios where processes related to metabolism were significantly perturbed. Further, in silico gene-knockout simulations uncovered discrepancies in gene essentiality for V. cholerae growth between single infections and coinfections. Integrative model-guided analysis thus identified druggable targets that would be critical for V. cholerae growth in both single infections and coinfections; thus, designing inhibitors against those targets would provide a broader spectrum of coverage against cholera infections.
  •  
2.
  • Motwalli, Olaa, et al. (författare)
  • In silico screening for candidate chassis strains of free fatty acid-producing cyanobacteria
  • 2017
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Finding a source from which high-energy-density biofuels can be derived at an industrial scale has become an urgent challenge for renewable energy production. Some microorganisms can produce free fatty acids (FFA) as precursors towards such high-energy-density biofuels. In particular, photosynthetic cyanobacteria are capable of directly converting carbon dioxide into FFA. However, current engineered strains need several rounds of engineering to reach the level of production of FFA to be commercially viable thus new chassis strains that require less engineering are needed. Although more than 120 cyanobacterial genomes are sequenced, the natural potential of these strains for FFA production and excretion has not been systematically estimated. Results: Here we present the FFA SC (FFASC), an in silico screening method that evaluates the potential for FFA production and excretion of cyanobacterial strains based on their proteomes. A literature search allowed for the compilation of 64 proteins, most of which influence FFA production and a few of which affect FFA excretion. The proteins are classified into 49 orthologous groups (OGs) that helped create rules used in the scoring/ranking of algorithms developed to estimate the potential for FFA production and excretion of an organism. Among 125 cyanobacterial strains, FFASC identified 20 candidate chassis strains that rank in their FFA producing and excreting potential above the specifically engineered reference strain, Synechococcus sp. PCC 7002. We further show that the top ranked cyanobacterial strains are unicellular and primarily include Prochlorococcus (order Prochlorales) and marine Synechococcus (order Chroococcales) that cluster phylogenetically. Moreover, two principal categories of enzymes were shown to influence FFA production the most: those ensuring precursor availability for the biosynthesis of lipids, and those involved in handling the oxidative stress associated to FFA synthesis. Conclusion: To our knowledge FFASC is the first in silico method to screen cyanobacteria proteomes for their potential to produce and excrete FFA, as well as the first attempt to parameterize the criteria derived from genetic characteristics that are favorable/non-favorable for this purpose. Thus, FFASC helps focus experimental evaluation only on the most promising cyanobacteria.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy