SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Misselt K. A.) "

Sökning: WFRF:(Misselt K. A.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chown, Ryan, et al. (författare)
  • PDRs4All: IV. An embarrassment of riches: Aromatic infrared bands in the Orion Bar
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Mid-infrared observations of photodissociation regions (PDRs) are dominated by strong emission features called aromatic infrared bands (AIBs). The most prominent AIBs are found at 3.3, 6.2, 7.7, 8.6, and 11.2 µm. The most sensitive, highest-resolution infrared spectral imaging data ever taken of the prototypical PDR, the Orion Bar, have been captured by JWST. These high-quality data allow for an unprecedentedly detailed view of AIBs. Aims. We provide an inventory of the AIBs found in the Orion Bar, along with mid-IR template spectra from five distinct regions in the Bar: the molecular PDR (i.e. the three H2 dissociation fronts), the atomic PDR, and the H II region. Methods. We used JWST NIRSpec IFU and MIRI MRS observations of the Orion Bar from the JWST Early Release Science Program, PDRs4All (ID: 1288). We extracted five template spectra to represent the morphology and environment of the Orion Bar PDR. We investigated and characterised the AIBs in these template spectra. We describe the variations among them here. Results. The superb sensitivity and the spectral and spatial resolution of these JWST observations reveal many details of the AIB emission and enable an improved characterization of their detailed profile shapes and sub-components. The Orion Bar spectra are dominated by the well-known AIBs at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 µm with well-defined profiles. In addition, the spectra display a wealth of weaker features and sub-components. The widths of many AIBs show clear and systematic variations, being narrowest in the atomic PDR template, but showing a clear broadening in the H II region template while the broadest bands are found in the three dissociation front templates. In addition, the relative strengths of AIB (sub-)components vary among the template spectra as well. All AIB profiles are characteristic of class A sources as designated by Peeters (2022, A&A, 390, 1089), except for the 11.2 µm AIB profile deep in the molecular zone, which belongs to class B11.2. Furthermore, the observations show that the sub-components that contribute to the 5.75, 7.7, and 11.2 µm AIBs become much weaker in the PDR surface layers. We attribute this to the presence of small, more labile carriers in the deeper PDR layers that are photolysed away in the harsh radiation field near the surface. The 3.3/11.2 AIB intensity ratio decreases by about 40% between the dissociation fronts and the H II region, indicating a shift in the polycyclic aromatic hydrocarbon (PAH) size distribution to larger PAHs in the PDR surface layers, also likely due to the effects of photochemistry. The observed broadening of the bands in the molecular PDR is consistent with an enhanced importance of smaller PAHs since smaller PAHs attain a higher internal excitation energy at a fixed photon energy. Conclusions. Spectral-imaging observations of the Orion Bar using JWST yield key insights into the photochemical evolution of PAHs, such as the evolution responsible for the shift of 11.2 µm AIB emission from class B11.2 in the molecular PDR to class A11.2 in the PDR surface layers. This photochemical evolution is driven by the increased importance of FUV processing in the PDR surface layers, resulting in a “weeding out” of the weakest links of the PAH family in these layers. For now, these JWST observations are consistent with a model in which the underlying PAH family is composed of a few species: the so-called ‘grandPAHs’.
  •  
2.
  • Habart, Emilie, et al. (författare)
  • PDRs4All II. JWST’s NIR and MIR imaging view of the Orion Nebula
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The James Webb Space Telescope (JWST) has captured the most detailed and sharpest infrared (IR) images ever taken of the inner region of the Orion Nebula, the nearest massive star formation region, and a prototypical highly irradiated dense photo-dissociation region (PDR). Aims. We investigate the fundamental interaction of far-ultraviolet (FUV) photons with molecular clouds. The transitions across the ionization front (IF), dissociation front (DF), and the molecular cloud are studied at high-angular resolution. These transitions are relevant to understanding the effects of radiative feedback from massive stars and the dominant physical and chemical processes that lead to the IR emission that JWST will detect in many Galactic and extragalactic environments. Methods. We utilized NIRCam and MIRI to obtain sub-arcsecond images over ∼150′′ and 42′′ in key gas phase lines (e.g., Pa α, Br α, [FeII] 1.64 µm, H2 1–0 S(1) 2.12 µm, 0–0 S(9) 4.69 µm), aromatic and aliphatic infrared bands (aromatic infrared bands at 3.3–3.4 µm, 7.7, and 11.3 µm), dust emission, and scattered light. Their emission are powerful tracers of the IF and DF, FUV radiation field and density distribution. Using NIRSpec observations the fractional contributions of lines, AIBs, and continuum emission to our NIRCam images were estimated. A very good agreement is found for the distribution and intensity of lines and AIBs between the NIRCam and NIRSpec observations. Results. Due to the proximity of the Orion Nebula and the unprecedented angular resolution of JWST, these data reveal that the molecular cloud borders are hyper structured at small angular scales of ∼0.1–1′′ (∼0.0002–0.002 pc or ∼40–400 au at 414 pc). A diverse set of features are observed such as ridges, waves, globules and photoevaporated protoplanetary disks. At the PDR atomic to molecular transition, several bright features are detected that are associated with the highly irradiated surroundings of the dense molecular condensations and embedded young star. Toward the Orion Bar PDR, a highly sculpted interface is detected with sharp edges and density increases near the IF and DF. This was predicted by previous modeling studies, but the fronts were unresolved in most tracers. The spatial distribution of the AIBs reveals that the PDR edge is steep and is followed by an extensive warm atomic layer up to the DF with multiple ridges. A complex, structured, and folded H0/H2 DF surface was traced by the H2 lines. This dataset was used to revisit the commonly adopted 2D PDR structure of the Orion Bar as our observations show that a 3D “terraced” geometry is required to explain the JWST observations. JWST provides us with a complete view of the PDR, all the way from the PDR edge to the substructured dense region, and this allowed us to determine, in detail, where the emission of the atomic and molecular lines, aromatic bands, and dust originate. Conclusions. This study offers an unprecedented dataset to benchmark and transform PDR physico-chemical and dynamical models for the JWST era. A fundamental step forward in our understanding of the interaction of FUV photons with molecular clouds and the role of FUV irradiation along the star formation sequence is provided.
  •  
3.
  • Peeters, Els, et al. (författare)
  • PDRs4All: III. JWST's NIR spectroscopic view of the Orion Bar
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. JWST has taken the sharpest and most sensitive infrared (IR) spectral imaging observations ever of the Orion Bar photodis-sociation region (PDR), which is part of the nearest massive star-forming region the Orion Nebula, and often considered to be the 'prototypical'strongly illuminated PDR. Aims. We investigate the impact of radiative feedback from massive stars on their natal cloud and focus on the transition from the H II region to the atomic PDR -crossing the ionisation front (IF) -, and the subsequent transition to the molecular PDR -crossing the dissociation front (DF). Given the prevalence of PDRs in the interstellar medium and their dominant contribution to IR radiation, understanding the response of the PDR gas to far-ultraviolet (FUV) photons and the associated physical and chemical processes is fundamental to our understanding of star and planet formation and for the interpretation of any unresolved PDR as seen by JWST. Methods. We used high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST to observe the Orion Bar PDR as part of the PDRs4All JWST Early Release Science programme. We constructed a 3″ × 25″ spatio-spectral mosaic covering 0.97-5.27 μm at a spectral resolution R of ~2700 and an angular resolution of 0.075″-0.173″. To study the properties of key regions captured in this mosaic, we extracted five template spectra in apertures centred on the three H2 dissociation fronts, the atomic PDR, and the H II region. This wealth of detailed spatial-spectral information was analysed in terms of variations in the physical conditions-incident UV field, density, and temperature -of the PDR gas. Results. The NIRSpec data reveal a forest of lines including, but not limited to, He I, H I, and C I recombination lines; ionic lines (e.g. Fe III and Fe II); O I and N I fluorescence lines; aromatic infrared bands (AIBs, including aromatic CH, aliphatic CH, and their CD counterparts); pure rotational and ro-vibrational lines from H2; and ro-vibrational lines from HD, CO, and CH+, with most of them having been detected for the first time towards a PDR. Their spatial distribution resolves the H and He ionisation structure in the Huygens region, gives insight into the geometry of the Bar, and confirms the large-scale stratification of PDRs. In addition, we observed numerous smaller-scale structures whose typical size decreases with distance from θ1 Ori C and IR lines from C I, if solely arising from radiative recombination and cascade, reveal very high gas temperatures (a few 1000 K) consistent with the hot irradiated surface of small-scale dense clumps inside the PDR. The morphology of the Bar, in particular that of the H2 lines, reveals multiple prominent filaments that exhibit different characteristics. This leaves the impression of a 'terraced'transition from the predominantly atomic surface region to the CO-rich molecular zone deeper in. We attribute the different characteristics of the H2 filaments to their varying depth into the PDR and, in some cases, not reaching the C+/C/CO transition. These observations thus reveal what local conditions are required to drive the physical and chemical processes needed to explain the different characteristics of the DFs and the photochemical evolution of the AIB carriers. Conclusions. This study showcases the discovery space created by JWST to further our understanding of the impact radiation from young stars has on their natal molecular cloud and proto-planetary disk, which touches on star and planet formation as well as galaxy evolution.
  •  
4.
  • Matsuura, M., et al. (författare)
  • Herschel Detects a Massive Dust Reservoir in Supernova 1987A
  • 2011
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 333:6047, s. 1258-1261
  • Tidskriftsartikel (refereegranskat)abstract
    • We report far-infrared and submillimeter observations of supernova 1987A, the star whose explosion was observed on 23 February 1987 in the Large Magellanic Cloud, a galaxy located 160,000 light years away. The observations reveal the presence of a population of cold dust grains radiating with a temperature of about 17 to 23 kelvin at a rate of about 220 times the luminosity of the Sun. The intensity and spectral energy distribution of the emission suggest a dust mass of about 0.4 to 0.7 times the mass of the Sun. The radiation must originate from the supernova ejecta and requires the efficient precipitation of all refractory material into dust. Our observations imply that supernovae can produce the large dust masses detected in young galaxies at very high redshifts.
  •  
5.
  • Camps, Peter, et al. (författare)
  • Benchmarking the calculation of stochastic heating and emissivity of dust grains in the context of radiative transfer simulations
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 580
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Thermal emission by stochastically heated dust grains (SHGs) plays an important role in the radiative transfer (RT) problem for a dusty medium. It is therefore essential to verify that RT codes properly calculate the dust emission before studying the effects of spatial distribution and other model parameters on the simulated observables. Aims. We define an appropriate problem for benchmarking dust emissivity calculations in the context of RT simulations, specifically including the emission from SHGs. Our aim is to provide a self-contained guide for implementors of such functionality and to offer insight into the effects of the various approximations and heuristics implemented by the participating codes to accelerate the calculations. Methods. The benchmark problem definition includes the optical and calorimetric material properties and the grain size distributions for a typical astronomical dust mixture with silicate, graphite, and PAH components. It also includes a series of analytically defined radiation fields to which the dust population is to be exposed and instructions for the desired output. We processed this problem using six RT codes participating in this benchmark effort and compared the results to a reference solution computed with the publicly available dust emission code DustEM. Results. The participating codes implement different heuristics to keep the calculation time at an acceptable level.We study the effects of these mechanisms on the calculated solutions and report on the level of (dis)agreement between the participating codes. For all but the most extreme input fields, we find agreement within 10% across the important wavelength range 3 μm ≤1000 μm. Conclusions. We conclude that the relevant modules in RT codes can and do produce fairly consistent results for the emissivity spectra of SHGs. This work can serve as a reference for implementors of dust RT codes, and it will pave the way for a more extensive benchmark effort focusing on the RT aspects of the various codes.
  •  
6.
  • Gordon, K. D., et al. (författare)
  • I. A 3D externally illuminated slab benchmark for dust radiative transfer
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 603, s. A114-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The radiative transport of photons through arbitrary three-dimensional (3D) structures of dust is a challenging problem due to the anisotropic scattering of dust grains and strong coupling between different spatial regions. The radiative transfer problem in 3D is solved using Monte Carlo or Ray Tracing techniques as no full analytic solution exists for the true 3D structures. Aims. We provide the first 3D dust radiative transfer benchmark composed of a slab of dust with uniform density externally illuminated by a star. This simple 3D benchmark is explicitly formulated to provide tests of the different components of the radiative transfer problem including dust absorption, scattering, and emission. Methods. The details of the external star, the slab itself, and the dust properties are provided. This benchmark includes models with a range of dust optical depths fully probing cases that are optically thin at all wavelengths to optically thick at most wavelengths. The dust properties adopted are characteristic of the diffuse Milky Way interstellar medium. This benchmark includes solutions for the full dust emission including single photon (stochastic) heating as well as two simplifying approximations: One where all grains are considered in equilibrium with the radiation field and one where the emission is from a single effective grain with size-distribution-averaged properties. A total of six Monte Carlo codes and one Ray Tracing code provide solutions to this benchmark. Results. The solution to this benchmark is given as global spectral energy distributions (SEDs) and images at select diagnostic wavelengths from the ultraviolet through the infrared. Comparison of the results revealed that the global SEDs are consistent on average to a few percent for all but the scattered stellar flux at very high optical depths. The image results are consistent within 10%, again except for the stellar scattered flux at very high optical depths. The lack of agreement between different codes of the scattered flux at high optical depths is quantified for the first time. Convergence tests using one of the Monte Carlo codes illustrate the sensitivity of the solutions to various model parameters. Conclusions. We provide the first 3D dust radiative transfer benchmark and validate the accuracy of this benchmark through comparisons between multiple independent codes and detailed convergence tests.
  •  
7.
  • Hernández-Vera, C., et al. (författare)
  • The extremely sharp transition between molecular and ionized gas in the Horsehead nebula
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 677
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive stars can determine the evolution of molecular clouds by eroding and photo-evaporating their surfaces with strong ultraviolet (UV) radiation fields. Moreover, UV radiation is relevant in setting the thermal gas pressure in star-forming clouds, whose influence can extend across various spatial scales, from the rims of molecular clouds to entire star-forming galaxies. Probing the fundamental structure of nearby molecular clouds is therefore crucial to understand how massive stars shape their surrounding medium and how fast molecular clouds are destroyed, specifically at their UV-illuminated edges, where models predict an intermediate zone of neutral atomic gas between the molecular cloud and the surrounding ionized gas whose size is directly related to the exposed physical conditions. We present the highest angular resolution (0.≥ 5, corresponding to 207 au) and velocity-resolved images of the molecular gas emission in the Horsehead nebula, using CO J = 3- 2 and HCO+ J = 4- 3 observations with the Atacama Large Millimeter/submillimeter Array (ALMA). We find that CO and HCO+ are present at the edge of the cloud, very close to the ionization (H+/H) and dissociation fronts (H/H2), suggesting a very thin layer of neutral atomic gas (<650 au) and a small amount of CO-dark gas (AV = 0.006- 0.26 mag) for stellar UV illumination conditions typical of molecular clouds in the Milky Way. The new ALMA observations reveal a web of molecular gas filaments with an estimated thermal gas pressure of Pth = (2.3 - 4.0) - 106 K cm- 3, and the presence of a steep density gradient at the cloud edge that can be well explained by stationary isobaric photo-dissociation region (PDR) models with pressures consistent with our estimations. However, in the H≥ ¯II region and PDR interface, we find Pth,PDR > Pth,H≥ ¯II suggesting the gas is slightly compressed. Therefore, dynamical effects cannot be completely ruled out and even higher angular observations will be needed to unveil their role.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy