SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Miwa Jill A.) "

Sökning: WFRF:(Miwa Jill A.)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cooil, Simon P., et al. (författare)
  • In Situ Patterning of Ultrasharp Dopant Profiles in Silicon
  • 2017
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 11:2, s. 1683-1688
  • Tidskriftsartikel (refereegranskat)abstract
    • We develop a method for patterning a buried two-dimensional electron gas (2DEG) in silicon using low kinetic energy electron stimulated desorption (LEESD) of a monohydride resist mask. A buried 2DEG forms as a result of placing a dense and narrow profile of phosphorus dopants beneath the silicon surface; a so-called δ -layer. Such 2D dopant profiles have previously been studied theoretically, and by angle-resolved photoemission spectroscopy, and have been shown to host a 2DEG with properties desirable for atomic-scale devices and quantum computation applications. Here we outline a patterning method based on low kinetic energy electron beam lithography, combined with in situ characterization, and demonstrate the formation of patterned features with dopant concentrations sufficient to create localized 2DEG states.
  •  
2.
  • Biswas, Deepnarayan, et al. (författare)
  • Ultrafast Triggering of Insulator-Metal Transition in Two-Dimensional VSe2
  • 2021
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 21:5, s. 1968-1975
  • Tidskriftsartikel (refereegranskat)abstract
    • The transition-metal dichalcogenide VSe2 exhibits an increased charge density wave transition temperature and an emerging insulating phase when thinned to a single layer. Here, we investigate the interplay of electronic and lattice degrees of freedom that underpin these phases in single-layer VSe2 using ultrafast pump-probe photoemission spectroscopy. In the insulating state, we observe a light-induced closure of the energy gap, which we disentangle from the ensuing hot carrier dynamics by fitting a model spectral function to the time-dependent photoemission intensity. This procedure leads to an estimated time scale of 480 fs for the closure of the gap, which suggests that the phase transition in single-layer VSe2 is driven by electron-lattice interactions rather than by Mott-like electronic effects. The ultrafast optical switching of these interactions in SL VSe2 demonstrates the potential for controlling phase transitions in 2D materials with light.
  •  
3.
  • Curcio, Davide, et al. (författare)
  • Ultrafast electronic linewidth broadening in the C 1s core level of graphene
  • 2021
  • Ingår i: Physical Review B. - : American Physical Society (APS). - 2469-9950 .- 2469-9969. ; 104:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We show that the presence of a transiently excited hot electron gas in graphene leads to a substantial broadening of the C 1s line probed by time-resolved x-ray photoemission spectroscopy. The broadening is found to be caused by an exchange of energy and momentum between the photoemitted core electron and the hot electron gas, rather than by vibrational excitations. This interpretation is supported by a quantitative line-shape analysis that accounts for the presence of the excited electrons. Fitting the spectra to this model directly yields the electronic temperature of the system, in good agreement with electronic temperature values obtained from valence band data. Furthermore, we show how the momentum change of the outgoing core electrons leads to a detectable but very small change in the time-resolved photoelectron diffraction pattern and to a nearly complete elimination of the core level binding energy variation associated with the presence of a narrow σ band in the C 1s state.
  •  
4.
  • Jones, Alfred J. H., et al. (författare)
  • Visualizing band structure hybridization and superlattice effects in twisted MoS2/WS2 heterobilayers
  • 2022
  • Ingår i: Current Opinion in Chemical Engineering. - : IOP Publishing Ltd. - 2211-3398. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A mismatch of atomic registries between single-layer transition metal dichalcogenides (TMDs) in a two-dimensional (2D) van der Waals heterostructure produces a moire superlattice with a periodic potential, which can be fine-tuned by introducing a twist angle between the materials. This approach is promising both for controlling the interactions between the TMDs and for engineering their electronic band structures, yet direct observation of the changes to the electronic structure introduced with varying twist angle has so far been missing. Here, we probe heterobilayers comprised of single-layer MoS2 and WS2 with twist angles ranging from 2 degrees to 20 degrees and determine the twist angle-dependent evolution of the electronic band structure using micro-focused angle-resolved photoemission spectroscopy. We find strong interlayer hybridization between MoS2 and WS2 electronic states at the (Gamma) over bar -point of the Brillouin zone, leading to a shift of the valence band maximum in the heterostructure. Replicas of the hybridized states are observed at the center of twist angle-dependent moire mini Brillouin zones. We confirm that these replica features arise from the inherent moire potential by comparing our experimental observations with density functional theory calculations of the superlattice dispersion. Our direct visualization of these features underscores the potential of using twisted heterobilayer semiconductors to engineer hybrid electronic states and superlattices that alter the electronic and optical properties of 2D heterostructures for a wide range of twist angles.
  •  
5.
  • Kyhl, Line, et al. (författare)
  • Exciting H2 Molecules for Graphene Functionalization
  • 2017
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851.
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrogen functionalization of graphene by exposure to vibrationally excited H2 molecules is investigated by combined scanning tunneling microscopy, high-resolution electron energy loss spectroscopy, X-ray photoelectron spectroscopy measurements, and density functional theory calculations. The measurements reveal that vibrationally excited H2 molecules dissociatively adsorb on graphene on Ir(111) resulting in nanopatterned hydrogen functionalization structures. Calculations demonstrate that the presence of the Ir surface below the graphene lowers the H2 dissociative adsorption barrier and allows for the adsorption reaction at energies well below the dissociation threshold of the H–H bond. The first reacting H2 molecule must contain considerable vibrational energy to overcome the dissociative adsorption barrier. However, this initial adsorption further activates the surface resulting in reduced barriers for dissociative adsorption of subsequent H2 molecules. This enables functionalization by H2 molecules with lower vibrational energy, yielding an avalanche effect for the hydrogenation reaction. These results provide an example of a catalytically active graphene-coated surface and additionally set the stage for a re-interpretation of previous experimental work involving elevated H2 background gas pressures in the presence of hot filaments.
  •  
6.
  • Majchrzak, Paulina, et al. (författare)
  • Spectroscopic view of ultrafast charge carrier dynamics in single- and bilayer transition metal dichalcogenide semiconductors
  • 2021
  • Ingår i: Journal of Electron Spectroscopy and Related Phenomena. - : Elsevier BV. - 0368-2048 .- 1873-2526. ; 250
  • Tidskriftsartikel (refereegranskat)abstract
    • The quasiparticle spectra of atomically thin semiconducting transition metal dichalcogenides (TMDCs) and their response to an ultrafast optical excitation critically depend on interactions with the underlying substrate. Here, we present a comparative time- and angle-resolved photoemission spectroscopy (TR-ARPES) study of the transient electronic structure and ultrafast carrier dynamics in the single- and bilayer TMDCs MoS2 and WS2 on three different substrates: Au(111), Ag(111) and graphene/SiC. The photoexcited quasiparticle bandgaps are observed to vary over the range of 1.9-2.5 eV between our systems. The transient conduction band signals decay on a sub-50 fs timescale on the metals, signifying an efficient removal of photoinduced carriers into the bulk metallic states. On graphene, we instead observe a fast timescale on the order of 170 fs, followed by a slow dynamics for the conduction band decay in MoS2. These timescales are explained by Auger recombination involving MoS2 and in-gap defect states. In bilayer TMDCs on metals we observe a complex redistribution of excited holes along the valence band that is substantially affected by interactions with the continuum of bulk metallic states.
  •  
7.
  • Mazzola, Federico, et al. (författare)
  • Disentangling phonon and impurity interactions in delta-doped Si(001)
  • 2014
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 104:17
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a study of the phonon and impurity interactions in a shallow two dimensional electron gas formed in Si(001). A highly conductive ultra-narrow n-type dopant delta-layer, which serves as a platform for quantum computation architecture, is formed and studied by angle resolved photoemission spectroscopy (ARPES) and temperature dependent nanoscale 4-point probe (4PP). The bandstructure of the delta-layer state is both measured and simulated. At 100 K, good agreement is only achieved by including interactions; electron-impurity scattering (W-0 = 56 to 61 meV); and electron-phonon coupling (lambda = 0.14 +/- 0.04). These results are shown to be consistent with temperature dependent 4PP resistance measurements which indicate that at 100 K, approximate to 7/8 of the measured resistance is due to impurity scattering with the remaining 1/8 coming from phonon interactions. In both resistance and bandstructure measurements, the impurity contribution exhibits a variability of approximate to 9% for nominally identical samples. The combination of ARPES and 4PP affords a thorough insight into the relevant contributions to electrical resistance in reduced dimensionality electronic platforms. (C) 2014 AIP Publishing LLC.
  •  
8.
  • Mazzola, Federico, et al. (författare)
  • Kinks in the σ Band of Graphene Induced by Electron-Phonon Coupling
  • 2013
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 111:21, s. 216806-
  • Tidskriftsartikel (refereegranskat)abstract
    • Angle-resolved photoemission spectroscopy reveals pronounced kinks in the dispersion of the σ band of graphene. Such kinks are usually caused by the combination of a strong electron-boson interaction and the cutoff in the Fermi-Dirac distribution. They are therefore not expected for the σ band of graphene that has a binding energy of more than ≈3.5  eV. We argue that the observed kinks are indeed caused by the electron-phonon interaction, but the role of the Fermi-Dirac distribution cutoff is assumed by a cutoff in the density of σ states. The existence of the effect suggests a very weak coupling of holes in the σ band not only to the π electrons of graphene but also to the substrate electronic states. This is confirmed by the presence of such kinks for graphene on several different substrates that all show a strong coupling constant of λ≈1.
  •  
9.
  • Mazzola, Federico, et al. (författare)
  • The sub-band structure of atomically sharp dopant profiles in silicon
  • 2020
  • Ingår i: npj Quantum Materials. - : Springer Science and Business Media LLC. - 2397-4648. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The downscaling of silicon-based structures and proto-devices has now reached the single-atom scale, representing an important milestone for the development of a silicon-based quantum computer. One especially notable platform for atomic-scale device fabrication is the so-called Si:P δ-layer, consisting of an ultra-dense and sharp layer of dopants within a semiconductor host. Whilst several alternatives exist, it is on the Si:P platform that many quantum proto-devices have been successfully demonstrated. Motivated by this, both calculations and experiments have been dedicated to understanding the electronic structure of the Si:P δ-layer platform. In this work, we use high-resolution angle-resolved photoemission spectroscopy to reveal the structure of the electronic states which exist because of the high dopant density of the Si:P δ-layer. In contrast to published theoretical work, we resolve three distinct bands, the most occupied of which shows a large anisotropy and significant deviation from simple parabolic behaviour. We investigate the possible origins of this fine structure, and conclude that it is primarily a consequence of the dielectric constant being large (ca. double that of bulk Si). Incorporating this factor into tight-binding calculations leads to a major revision of band structure; specifically, the existence of a third band, the separation of the bands, and the departure from purely parabolic behaviour. This new understanding of the band structure has important implications for quantum proto-devices which are built on the Si:P δ-layer platform.
  •  
10.
  • Polley, Craig M., et al. (författare)
  • Microscopic four-point-probe resistivity measurements of shallow, high density doping layers in silicon
  • 2012
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 101:26
  • Tidskriftsartikel (refereegranskat)abstract
    • We present room temperature resistivity measurements of shallow, monolayer doped phosphorus in silicon, a material system of interest for both conventional microelectronic manufacturing, and future quantum electronic devices. Using an in-situ variable spacing microscopic four-probe system, we demonstrate the ability to separate the conductivity of the substrate and the doping layer. We show that the obtained sensitivity to the dopant layer derives from a combination of the nanoscale contacting areas and the conductivity difference between the highly doped 2D layer and the substrate. At an encapsulation depth of only 4 nm, we demonstrate a room temperature resistivity of 1.4k Omega/square. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773485]
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy