SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moat J.) "

Sökning: WFRF:(Moat J.)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arndt, D. S., et al. (författare)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Forskningsöversikt (refereegranskat)
  •  
2.
  •  
3.
  •  
4.
  • Ralimanana, H., et al. (författare)
  • Madagascar’s extraordinary biodiversity: Threats and opportunities
  • 2022
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 378:6623
  • Forskningsöversikt (refereegranskat)abstract
    • Madagascar’s unique biota is heavily affected by human activity and is under intense threat. Here, we review the current state of knowledge on the conservation status of Madagascar’s terrestrial and freshwater biodiversity by presenting data and analyses on documented and predicted species-level conservation statuses, the most prevalent and relevant threats, ex situ collections and programs, and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area network in Madagascar covers 10.4% of its land area and includes at least part of the range of the majority of described native species of vertebrates with known distributions (97.1% of freshwater fishes, amphibians, reptiles, birds, and mammals combined) and plants (67.7%). The overall figures are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants occurring within at least one protected area). International Union for Conservation of Nature (IUCN) Red List assessments and Bayesian neural network analyses for plants identify overexploitation of biological resources and unsustainable agriculture as the most prominent threats to biodiversity. We highlight five opportunities for action at multiple levels to ensure that conservation and ecological restoration objectives, programs, and activities take account of complex underlying and interacting factors and produce tangible benefits for the biodiversity and people of Madagascar.
  •  
5.
  • Lughadha, E. N., et al. (författare)
  • Extinction risk and threats to plants and fungi
  • 2020
  • Ingår i: Plants People Planet. - : Wiley. - 2572-2611. ; 2:5, s. 389-408
  • Tidskriftsartikel (refereegranskat)abstract
    • Societal Impact Statement There is increasing awareness that plants and fungi, as natural solutions, can play an important role in tackling ongoing global environmental challenges. We illustrate how understanding current and projected threats to plants and fungi is necessary to manage and mitigate risks, while building awareness of gaps and bias in current assessment coverage is essential to adequately prioritize conservation efforts. We highlight the state of the art in conservation science and point to current methods of assessment and future studies needed to mitigate species extinction. SummaryPlant and fungal biodiversity underpin life on earth and merit careful stewardship in an increasingly uncertain environment. However, gaps and biases in documented extinction risks to plant and fungal species impede effective management. Formal extinction risk assessments help avoid extinctions, through engagement, financial, or legal mechanisms, but most plant and fungal species lack assessments. Available global assessments cover c. 30% of plant species (ThreatSearch). Red List coverage overrepresents woody perennials and useful plants, but underrepresents single-country endemics. Fungal assessments overrepresent well-known species and are too few to infer global status or trends. Proportions of assessed vascular plant species considered threatened vary between global assessment datasets: 37% (ThreatSearch), and 44% (International Union for Conservation of Nature Red List of Threatened Species). Our predictions, correcting for several quantifiable biases, suggest that 39% of all vascular plant species are threatened with extinction. However, other biases remain unquantified, and may affect our estimate. Preliminary trend data show plants moving toward extinction. Quantitative estimates based on plant extinction risk assessments may understate likely biodiversity loss: they do not fully capture the impacts of climate change, slow-acting threats, or clustering of extinction risk, which could amplify loss of evolutionary potential. The importance of extinction risk estimation to support existing and emerging conservation initiatives is likely to grow as threats to biodiversity intensify. This necessitates urgent and strategic expansion of efforts toward comprehensive and ongoing assessment of plant and fungal extinction risk.
  •  
6.
  • Grace, O. M., et al. (författare)
  • Plant Power: Opportunities and challenges for meeting sustainable energy needs from the plant and fungal kingdoms
  • 2020
  • Ingår i: Plants People Planet. - : Wiley. - 2572-2611. ; 2:5, s. 446-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Societal Impact Statement Bioenergy is a major component of the global transition to renewable energy technologies. The plant and fungal kingdoms offer great potential but remain mostly untapped. Their increased use could contribute to the renewable energy transition and addressing the United Nations Sustainable Development Goal 7 "Ensure access to affordable, reliable, sustainable and modern energy for all." Current research focuses on species cultivated at scale in temperate regions, overlooking the wealth of potential new sources of small-scale energy where they are most urgently needed. A shift towards diversified, accessible bioenergy technologies will help to mitigate and adapt to the threats of climate change, decrease energy poverty, improve human health by reducing indoor pollution, increase energy resilience of communities, and decrease greenhouse gas emissions from fossil fuels. SummaryBioenergy derived from plants and fungi is a major component of the global transition to renewable energy technologies. There is rich untapped diversity in the plant and fungal kingdoms that offers potential to contribute to the shift away from fossil fuels and to address the United Nations Sustainable Development Goal 7 (SDG7) "Ensure access to affordable, reliable, sustainable and modern energy for all." Energy poverty-the lack of access to modern energy services-is most acute in the Global South where biodiversity is greatest and least investigated. Our systematic review of the literature over the last 5 years (2015-2020) indicates that research efforts have targeted a very small number of plant species cultivated at scale, mostly in temperate regions. The wealth of potential new sources of bioenergy in biodiverse regions, where the implementation of SDG7 is most urgently needed, has been largely overlooked. We recommend next steps for bioenergy stakeholders-research, industry, and government-to seize opportunities for innovation to alleviate energy poverty while protecting biodiversity. Small-scale energy production using native plant species in bioenergy landscapes overcomes many pitfalls associated with bioenergy crop monocultures, such as biodiversity loss and conflict with food production. Targeted trait-based screening of plant species and biological screening of fungi are required to characterize the potential of this resource. The benefits of diversified, accessible bioenergy go beyond the immediate urgency of energy poverty as more diverse agricultural landscapes are more resilient, store more carbon, and could also reduce the drivers of the climate and environmental emergencies.
  •  
7.
  • Paton, A., et al. (författare)
  • Plant and fungal collections: Current status, future perspectives
  • 2020
  • Ingår i: Plants People Planet. - : Wiley. - 2572-2611. ; 2:5, s. 499-514
  • Tidskriftsartikel (refereegranskat)abstract
    • Societal Impact Statement Plant and fungal specimens provide the auditable evidence that a particular organism occurred at a particular place, and at a particular point in time, verifying past occurrence and distribution. They also document the aspects of human exploration and culture. Collectively specimens form a global asset with significant potential for new uses to help address societal and environmental challenges. Collections also serve as a platform to engage and educate a broad range of stakeholders from the academic to the public, strengthening engagement and understanding of plant and fungal diversity-the basis of life on Earth. SummaryWe provide a global review of the current state of plant and fungal collections including herbaria and fungaria, botanic gardens, fungal culture collections, and biobanks. The review focuses on the numbers of collections, major taxonomic group and species level coverage, geographical representation and the extent to which the data from collections are digitally accessible. We identify the major gaps in these collections and in digital data. We also consider what collection types need to be further developed to support research, such as environmental DNA and cryopreservation of desiccation-sensitive seeds. Around 31% of vascular plant species are represented in botanic gardens, and 17% of known fungal species are held in culture collections, both these living collections showing a bias toward northern temperate taxa. Only 21% of preserved collections are available via the Global Biodiversity Information Facility (GBIF) with Asia, central and north Africa and Amazonia being relatively under-represented. Supporting long-term collection facilities in biodiverse areas should be considered by governmental and international aid agencies, in addition to short-term project funding. Institutions should consider how best to speed up digitization of collections and to disseminate all data via aggregators such as GBIF, which will greatly facilitate use, research, and community curation to improve quality. There needs to be greater alignment between biodiversity informatics initiatives and standards to allow more comprehensive analysis of collections data and to facilitate linkage of extended information, facilitating broader use. Much can be achieved with greater coordination through existing initiatives and strengthening relationships with users.
  •  
8.
  • Ramjaun, T., et al. (författare)
  • Effect of interpass temperature on residual stresses in multipass welds produced using low transformation temperature filler alloy
  • 2014
  • Ingår i: Science and technology of welding and joining. - 1362-1718 .- 1743-2936. ; 19:1, s. 44-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Weld filler alloys that exploit transformation plasticity through low austenite to martensite transformation temperatures offer an effective method of reducing residual stresses in strong steel welds. However, in multipass welds, the heat input from later weld passes may be insufficient to retransform prior welding passes, leading to the accumulation of thermally induced strains and elevated residual stresses. In this work, the residual stress distributions produced around arc welds fabricated with a martensitic weld filler alloy that transforms at a low temperature have been studied as a function of the number of passes deposited and the interpass temperature. It is found that when the interpass temperature is above the transformation temperature of the weld metal, the entire multipass weld transforms as a single entity, thus permitting the optimum exploitation of the transformation plasticity. In contrast, the deposition of new metal with a relatively low interpass temperature leads to increased residual stresses in the underlying layers, reducing or eliminating the beneficial stress states previously created.
  •  
9.
  •  
10.
  • Achtert, P., et al. (författare)
  • Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar
  • 2015
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 8:11, s. 4993-5007
  • Tidskriftsartikel (refereegranskat)abstract
    • Three months of Doppler lidar wind measurements were obtained during the Arctic Cloud Summer Experiment on the icebreakerOden during the summer of 2014. Such ship-borne Doppler measurements require active stabilisation to remove the effects of ship motion. We demonstrate that the combination of a commercial Doppler lidar with a custom-made motion-stabilisation platform enables the retrieval of wind profiles in the Arctic atmospheric boundary layer during both cruising and ice-breaking with statistical uncertainties comparable to land-based measurements. This held true particularly within the atmospheric boundary layer even though the overall aerosol load was very low. Motion stabilisation was successful for high wind speeds in open water and the resulting wave conditions. It allows for the retrieval of vertical winds with a random error below 0.2 m s−1. The comparison of lidar-measured wind and radio soundings gives a mean bias of 0.3 m s−1 (2°) and a mean standard deviation of 1.1 m s−1 (12°) for wind speed (wind direction). The agreement for wind direction degrades with height. The combination of a motion-stabilised platform with a low-maintenance autonomous Doppler lidar has the potential to enable continuous long-term high-resolution ship-based wind profile measurements over the oceans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy