SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mode Agneta) "

Sökning: WFRF:(Mode Agneta)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Améen, Caroline, 1975, et al. (författare)
  • Effects of gender and GH secretory pattern on sterol regulatory element-binding protein-1c and its target genes in rat liver.
  • 2004
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 287:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated whether the sexually dimorphic secretory pattern of growth hormone (GH) in the rat regulates hepatic gene expression of sterol regulatory element-binding protein-1c (SREBP-1c) and its target genes. SREBP-1c, fatty acid synthase (FAS), and glycerol-3-phosphate acyltransferase (GPAT) mRNA were more abundant in female than in male livers, whereas acetyl-CoA carboxylase-1 (ACC1) and stearoyl-CoA desaturase-1 (SCD-1) were similarly expressed in both sexes. Hypophysectomized female rats were given GH as a continuous infusion or as two daily injections for 7 days to mimic the female- and male-specific GH secretory patterns, respectively. The female pattern of GH administration increased the expression of SREBP-1c, ACC1, FAS, SCD-1, and GPAT mRNA, whereas the male pattern of GH administration increased only SCD-1 mRNA. FAS and SCD-1 protein levels were regulated in a similar manner by GH. Incubation of primary rat hepatocytes with GH increased SCD-1 mRNA levels and decreased FAS and GPAT mRNA levels but had no effect on SREBP-1c mRNA. GH decreased hepatic liver X receptor-alpha (LXRalpha) mRNA levels both in vivo and in vitro. Feminization of the GH plasma pattern in male rats by administration of GH as a continuous infusion decreased insulin sensitivity and increased expression of FAS and GPAT mRNA but had no effect on SREBP-1c, ACC1, SCD-1, or LXRalpha mRNA. In conclusion, FAS and GPAT are specifically upregulated by the female secretory pattern of GH. This regulation is not a direct effect of GH on hepatocytes and does not involve changed expression of SREBP-1c or LXRalpha mRNA but is associated with decreased insulin sensitivity.
  •  
2.
  • Archer, Amena, et al. (författare)
  • The Liver X-Receptor (Lxr) Governs Lipid Homeostasis in Zebrafish during Development
  • 2012
  • Ingår i: Open journal of endocrine and metabolic diseases. - : Scientific Research Publishing. - 2165-7424 .- 2165-7432. ; 2:4, s. 74-81
  • Tidskriftsartikel (refereegranskat)abstract
    • The liver-X-receptors (LXRs) act as cholesterol sensors and participate in the regulation of lipid and cholesterol metabolism. The objective of this study was to determine the role of LXR during development using the zebrafish model. By in situ hybridization we showed distinct expression of lxr in the brain and the retina in the developing and adult zebrafish. Lxr ligand activation affected the expression of genes involved in lipid metabolism in zebrafish adult brain and eye as well as in zebrafish embryos. Morpholino knock down of lxr resulted in an overall impaired lipid deposition as determined by oil red O staining particularly in the head and around the eyes, and to significantly elevated levels of both total and free cholesterol in the yolk of lxr morphant embryos. The expression of genes involved in lipid and cholesterol metabolism was also changed in the lxr morphants. Furthermore, alcian blue staining revealed malformation of the pharyngeal skeleton in the lxr morphant. Our data show that Lxr is an important component of the regulatory network governing the lipid homeostasis during zebrafish development, which in turn may support a role of Lxr for normal development of the central nervous sytem, including the retina.
  •  
3.
  • Archer, Amena, et al. (författare)
  • Transcriptional activity and developmental expression of liver X receptor (lxr) in zebrafish
  • 2008
  • Ingår i: Developmental Dynamics. - : Wiley. - 1058-8388 .- 1097-0177. ; 237:4, s. 1090-1098
  • Tidskriftsartikel (refereegranskat)abstract
    • Mammalian liver-X-receptors (LXRs) are transcription factors activated by oxysterols. They play an essential role in lipid and glucose metabolism. We have cloned the open reading frame of zebrafish lxr and describe its genomic organization. Zebrafish lxr encodes a 50-kDa protein with high sequence similarity to mammalian LXR alpha. In transfection assays, the encoded protein showed transcriptional activity in response to LXR-ligands. Treatment of adult zebrafish with the synthetic LXR ligand, GW3965, induced expression of genes involved in hepatic cholesterol and lipid pathways. Using qPCR and in situ hybridization, we found ubiquitous expression of lxr mRNA during the first 24 hr of development, followed by more restricted expression, particularly to the liver at 3dpf and the liver and intestine at 4dpf. In adult fish, all examined organs expressed lxr. In addition to a metabolic role of lxr, the temporal expression pattern suggests a developmental role in, e.g., the liver and CNS.
  •  
4.
  • Kitambi, Satish Srinivas (författare)
  • Teleost retina : a model for study neurogenesis and angiogenesis
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Teleost models, zebrafish and medaka have become popular models to study various aspects of developmental biology and genetics. The rapid embryonic development, transparent embryos and the availability of many mutants for various developmental and molecular pathways contribute to the usefulness of these models. The availability of various biochemical, molecular and genetic techniques applicable on these models facilitate in dissecting developmental processes. Teleost retina shows very high similarity to that seen in mammalian retina. The arrangement of the six types of neurons and one type of glia is very similar. Zebrafish has been extensively used in gaining insight into the development and functioning of the retina. Medaka, on the other hand has not been so extensively capitalized as zebrafish. The current study characterizes expression of genes mainly from the nuclear receptor family and establishes the role of zebrafish liver x receptor in governing the size, patterning and neurogenesis of the retina in zebrafish. We also establish the time line of the retinal patterning of medaka retina. Zebrafish and medaka retina show both similarity and difference in the developmental events governing the patterning of the retina. In zebrafish, retinal neurogenesis follows a fan gradient pattern starting at the ventro-nasal region. In medaka, neurogenesis starts from the central retina. An additional, second domain of neurogenesis is seen with the patterning of photoreceptors in medaka. This observation highlights the possibility of utilizing these two species as comparative models in gaining rapid understanding of retinal development and function. This study also establishes the time line of vascular development in the zebrafish retina, an important event required for normal function. Similar to neurogenesis, vasculaturedevelops rapidly and this feature was utilized to develop a small molecule-screening assay. The screening resulted in identification of five compounds that produced phenotype ranging from decrease in the number of vessels to loss of vessels specifically in the retina. To gain insight into the mode of action, further analyses of three of the five identified compounds, using either morpholino knockdown or structural similarity search was done. This study highlights the advantage of using zebrafish model to perform medically relevant chemical screen.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy