SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moessler Herbert) "

Sökning: WFRF:(Moessler Herbert)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Menon, Preeti Kumaran, et al. (författare)
  • Cerebrolysin, a Mixture of Neurotrophic Factors Induces Marked Neuroprotection in Spinal Cord Injury Following Intoxication of Engineered Nanoparticles from Metals
  • 2012
  • Ingår i: CNS & Neurological Disorders - Drug Targets. - : Bentham Science Publishers Ltd.. - 1871-5273. ; 11:1, s. 40-49
  • Forskningsöversikt (refereegranskat)abstract
    • Spinal cord injury (SCI) is the world's most disastrous disease for which there is no effective treatment till today. Several studies suggest that nanoparticles could adversely influence the pathology of SCI and thereby alter the efficacy of many neuroprotective agents. Thus, there is an urgent need to find suitable therapeutic agents that could minimize cord pathology following trauma upon nanoparticle intoxication. Our laboratory has been engaged for the last 7 years in finding suitable therapeutic strategies that could equally reduce cord pathology in normal and in nanoparticle-treated animal models of SCI. We observed that engineered nanoparticles from metals e.g., aluminum (Al), silver (Ag) and copper (Cu) (50-60 nm) when administered in rats daily for 7 days (50 mg/kg, i.p.) resulted in exacerbation of cord pathology after trauma that correlated well with breakdown of the blood-spinal cord barrier (BSCB) to serum proteins. The entry of plasma proteins into the cord leads to edema formation and neuronal damage. Thus, future drugs should be designed in such a way to be effective even when the SCI is influenced by nanoparticles. Previous research suggests that a suitable combination of neurotrophic factors could induce marked neuroprotection in SCI in normal animals. Thus, we examined the effects of a new drug; cerebrolysin that is a mixture of different neurotrophic factors e.g., brain-derived neurotrophic factor (BDNF), glial cell line derived neurotrophic factor (GDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF) and other peptide fragments to treat normal or nanoparticle-treated rats after SCI. Our observations showed that cerebrolysin (2.5 ml/kg, i.v.) before SCI resulted in good neuroprotection in normal animals, whereas nanoparticle-treated rats required a higher dose of the drug (5.0 ml/kg, i.v.) to induce comparable neuroprotection in the cord after SCI. Cerebrolysin also reduced spinal cord water content, leakage of plasma proteins and the number of injured neurons. This indicates that cerebrolysin in higher doses could be a good candidate for treating SCI cases following nanoparticle intoxication. The possible mechanisms and functional significance of these findings are discussed in this review.
  •  
3.
  • Menon, Preeti K., et al. (författare)
  • Intravenous Administration of Functionalized Magnetic Iron Oxide Nanoparticles Does Not Induce CNS Injury in the Rat : Influence of Spinal Cord Trauma and Cerebrolysin Treatment
  • 2017
  • Ingår i: Nanomedicine In Central Nervous System Injury And Repair. - : Elsevier. - 9780128123812 ; , s. 47-63
  • Bokkapitel (refereegranskat)abstract
    • Influence of iron oxide magnetic nanoparticles (IOMNPs, 10nm in diameter, 0.25 or 0.50mg/mL in 100 mu L, i.v.) on the blood-brain barrier (BBB) permeability, edema formation, and neuronal or glial changes within 4-24h after administration was examined in normal rats and after a focal spinal cord injury (SCI). Furthermore, effect of cerebrolysin, a balanced composition of several neurotrophic factors, and active peptide fragments was also evaluated on IOMNP-induced changes in central nervous system (CNS) pathology. The SCI was inflicted in rats by making a longitudinal incision into the right dorsal horn of the T10-11 segments and allowed to survive 4 or 24h after trauma. Cerebrolysin (2.5 mL/kg, i.v.) was given either 30min before IOMNP injection in the 4-h SCI group or 4h after injury in the 24-h survival groups. Control group received cerebrolysin in identical situation following IOMNP administration. In all groups, leakage of serum albumin in the CNS as a marker of BBB breakdown and activation of astrocytes using glial fibrillary acidic protein was evaluated by immunohistochemistry. The neuronal injury was examined by Nissl staining. The IOMNPs alone in either low or high doses did not induce CNS pathology either following 4 or 24h after administration. However, administration of IOMNPs in SCI group slightly enhanced the pathological changes in the CNS after 24h but not 4h after trauma. Cerebrolysin treatment markedly attenuated IOMNP-induced aggravation of SCI-induced cord pathology and induced significant neuroprotection. These observations are the first to show that IOMNPs are safe for the CNS and cerebrolysin treatment prevented CNS pathology following a combination of trauma and IOMNP injection. This indicated that cerebrolysin might be used as adjunct therapy during IOMNP administration in disease conditions, not reported earlier.
  •  
4.
  •  
5.
  • Muresanu, Dafin Fior, et al. (författare)
  • Hypertension Associated With Silica Dust Intoxication Aggravates Brain Pathology Following Traumatic Brain Injury : New Roles of Neurotrophic Factors
  • 2017
  • Ingår i: The journal of head trauma rehabilitation. - 0885-9701 .- 1550-509X. ; 32:6, s. E68-E69
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Introduction/Rational: Military personnel engaged in combat operation are often exposed to desert storm resulting in silica dust (SiO2 nanoparticles) intoxication. In addition, combat stress, sleep deprivation and continuous attention for enemy group results in mild to moderate hypertension. Under such situations, any traumatic brain or spinal cord injury could result in massive brain pathology due to stress induced hypertension and possibly SiO2 nanoparticles intoxication. However, effects of trauma in hypertension and SiO2 intoxication are still not well known. In present study we investigated the effects of hypertension and SiO2 intoxication of the pathophysiology of traumatic brain injury (TBI).Method/Approach: Male Wistar rats (250-300 g) were made renal hypertensive by 2kidney 1clip (2K1C) procedure allowing mean arterial blood pressure (MABP) reaching 180 ± 8 torr over 6 weeks. These hypertensive rats were exposed to SiO2NPs (40-50 nm) once daily (50 mg/kg, i.p.) for 8 days. On the 9th day these hypertensive and SiO2NPs intoxicated animals were subjected to TBI under anesthesia by making an incision (3 mm long and 2.5 mm deep) on the right parietal cerebral cortex after opening the skull (4mmOD) on both sides. The animas were allowed to survive 48 h after TBI.Results/Effects: TBI in hypertensive and SiO2 nanoparticles intoxicated rats showed 4-to-6 fold higher breakdown of the blood-brain barrier (BBB) to Evans blue albumin (EBA) and [131]-Iodine, edema formation and neuronal injuries as compared to TBI in normal animals at 48 h. Treatment with a multimodal drug Cerebrolysin-containing balanced composition of neurotrophic factors and active peptide fragments (10 ml/kg, i.v.) started 4 h after TBI followed by 4 injections at every 8 h markedly reduced brain pathologies. Whereas only 5 ml/kg of the drug is needed to achieve identical neuroprotection in normal rats after TBI.Conclusions/Limitations: These observations are the first to show that a combination of hypertension and SiO2 nanoparticles worsens brain pathology in TBI. Under these situations almost double dose of drugs is needed to induce neuroprotection, not reported earlier. Our laboratory is engaged to see whether nanodelivery of cerebrolysin could have an added therapeutic value in this complicated situation of brain injury, a subject that is currently being investigated in our laboratory.
  •  
6.
  •  
7.
  • Ozkizilcik, Asya, et al. (författare)
  • Nanodelivery of cerebrolysin reduces pathophysiology of Parkinson's disease
  • 2019
  • Ingår i: NANONEUROPROTECTION AND NANONEUROTOXICOLOGY. - : ACADEMIC PRESS LTD-ELSEVIER SCIENCE LTD. - 9780444642080 ; , s. 201-246
  • Bokkapitel (refereegranskat)abstract
    • Parkinson's disease (PD) is affecting >10 million people worldwide for which no suitable cure has been developed so far. Roughly, about two people per thousand populations are affected with PD like symptoms especially over the age of 50. About 1% of the populations above 60 years suffer from PD-like disease. The prevalence of the disease is increasing over the years, and future projections by 2020 could be 12-14 millions people affected by the disease. Thus, exploration of suitable therapeutic measures is the need of the hour to enhance quality of the life of PD patients. PD induced brain pathology includes loss of dopaminergic neurons in the substantia niagra that could later extends to other cortical regions causing loss of voluntary motor control. Deposition of alpha-synuclein in the brain further leads to neurodegeneration. However, the exact cause of PD is still unknown. It appears that breakdown of the blood-brain barrier (BBB) and leakage of serum component into the brain could lead to neurodegeneration in PD. Thus, novel treatment strategies that are able to restore BBB breakdown and enhance neuronal plasticity and neuroregeneration in PD could be effective in future therapy. With the advancement of nanotechnology, it is worthwhile to understand the role of nanodelivery of selected agents in PD to enhance neuroprotection. In this review new role of BBB, brain edema, and neuropathology in PD is discussed. In addition, superior neuroprotection induced by nanowired delivery of a multimodal drug cerebrolysin in PD is summarized based on our own investigations.
  •  
8.
  • Ruozi, Barbara, et al. (författare)
  • PLGA Nanoparticles Loaded Cerebrolysin : Studies on Their Preparation and Investigation of the Effect of Storage and Serum Stability with Reference to Traumatic Brain Injury
  • 2015
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 52:2, s. 899-912
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrolysin is a peptide mixture able to ameliorate symptomatology and delay progression of neurological disorders such as Alzheimer's disease and dementia. The administration of this drug in humans presents several criticisms due to its short half-life, poor stability, and high doses needed to achieve the effect. This paper investigates the potential of polylactic-co-glycolide (PLGA) nanoparticles (NPs) as sustained release systems for iv administration of cerebrolysin in normal and brain injured rats. NPs were prepared by water-in-oil-in-water (w/o/w) double emulsion technique and characterized by light scattering for mean size and zeta potential and by scanning electron microscopy (SEM) for surface morphology. The NPs produced by double sonication under cooling at 60 W for 45 s, 12 mL of 1 % w:v of PVA, and 1:0.6 w:w drug/PLGA ratio (C-NPs4) displayed an adequate loading of drug (24 +/- 1 mg/100 mg of NPs), zeta potential value (-13 mV), and average diameters (ranged from 250 to 330 nm) suitable to iv administration. SEM images suggested that cerebrolysin was molecularly dispersed into matricial systems and partially adhered to the NP surface. A biphasic release with an initial burst effect followed by sustained release over 24 h was observed. Long-term stability both at room and at low temperature of freeze-dried NPs was investigated. To gain deeper insight into NP stability after in vivo administration, the stability of the best NP formulation was also tested in serum. These PLGA NPs loaded with cerebrolysin were able to reduce brain pathology following traumatic brain injury. However, the size, the polydispersivity, and the surface properties of sample were significantly affected by the incubation time and the serum concentration.
  •  
9.
  • Ruozi, Barbara, et al. (författare)
  • Poly (D, L-Lactide-co-Glycolide) Nanoparticles Loaded with Cerebrolysin Display Neuroprotective Activity in a Rat Model of Concussive Head Injury
  • 2014
  • Ingår i: CNS & Neurological Disorders. - : Bentham Science Publishers Ltd.. - 1871-5273 .- 1996-3181. ; 13:8, s. 1475-1482
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrolysin (CBL) is a neuroprotective agent in central nervous system (CNS) injury and stimulates neurorepair processes. Several studies in our laboratory suggest that CBL administered through nanowired technology may have superior neuroprotective efficacy in CNS trauma. In this investigation, we compared the neuroprotective efficacy of poly-lactide-co-glycolide nanoparticles (NPs) loaded with CBL vs free CBL in a rat model of concussive head injury (CHI). Free CBL or CBL loaded NPs was administered 30 min to 1 h after CHI and animals were sacrificed 5 h later. Changes in blood-brain barrier and brain edema formation were measured as parameters of neuroprotection in CHI after giving CBL alone or as the nanodelivered compound. Our results clearly show that delivery of CBL by NPs has superior neuroprotective effects following CHI as compared to normal CBL. This suggests that CBL delivered by NPs could have robust neuroprotective action in CNS trauma. These findings have potential clinical relevance with regard to nanodelivery of CBL, a feature that requires further investigation.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy