SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mogensen I) "

Sökning: WFRF:(Mogensen I)

  • Resultat 1-10 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Tapia-Ruiz, Nuria, et al. (författare)
  • 2021 roadmap for sodium-ion batteries
  • 2021
  • Ingår i: Journal of Physics. - : Institute of Physics Publishing (IOPP). - 2515-7655. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing concerns regarding the sustainability of lithium sources, due to their limited availability and consequent expected price increase, have raised awareness of the importance of developing alternative energy-storage candidates that can sustain the ever-growing energy demand. Furthermore, limitations on the availability of the transition metals used in the manufacturing of cathode materials, together with questionable mining practices, are driving development towards more sustainable elements. Given the uniformly high abundance and cost-effectiveness of sodium, as well as its very suitable redox potential (close to that of lithium), sodium-ion battery technology offers tremendous potential to be a counterpart to lithium-ion batteries (LIBs) in different application scenarios, such as stationary energy storage and low-cost vehicles. This potential is reflected by the major investments that are being made by industry in a wide variety of markets and in diverse material combinations. Despite the associated advantages of being a drop-in replacement for LIBs, there are remarkable differences in the physicochemical properties between sodium and lithium that give rise to different behaviours, for example, different coordination preferences in compounds, desolvation energies, or solubility of the solid-electrolyte interphase inorganic salt components. This demands a more detailed study of the underlying physical and chemical processes occurring in sodium-ion batteries and allows great scope for groundbreaking advances in the field, from lab-scale to scale-up. This roadmap provides an extensive review by experts in academia and industry of the current state of the art in 2021 and the different research directions and strategies currently underway to improve the performance of sodium-ion batteries. The aim is to provide an opinion with respect to the current challenges and opportunities, from the fundamental properties to the practical applications of this technology.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Matuozzo, D, et al. (författare)
  • Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19
  • 2022
  • Ingår i: medRxiv : the preprint server for health sciences. - : Cold Spring Harbor Laboratory.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • BackgroundWe previously reported inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity in 1-5% of unvaccinated patients with life-threatening COVID-19, and auto-antibodies against type I IFN in another 15-20% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3,269 unvaccinated patients with life-threatening COVID-19 (1,301 previously reported and 1,968 new patients), and 1,373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. A quarter of the patients tested had antibodies against type I IFN (234 of 928) and were excluded from the analysis.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants wasTLR7, with an OR of 27.68 (95%CI:1.5-528.7,P=1.1×10−4), in analyses restricted to biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70 [95%CI:1.3-8.2],P=2.1×10−4). Adding the recently reportedTYK2COVID-19 locus strengthened this enrichment, particularly under a recessive model (OR=19.65 [95%CI:2.1-2635.4];P=3.4×10−3). When these 14 loci andTLR7were considered, all individuals hemizygous (n=20) or homozygous (n=5) for pLOF or bLOF variants were patients (OR=39.19 [95%CI:5.2-5037.0],P=4.7×10−7), who also showed an enrichment in heterozygous variants (OR=2.36 [95%CI:1.0-5.9],P=0.02). Finally, the patients with pLOF or bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years;P=1.68×10−5).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy