SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moghadasi S) "

Sökning: WFRF:(Moghadasi S)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Alibakhshikenari, Mohammad, et al. (författare)
  • A Comprehensive Survey on Antennas On-Chip Based on Metamaterial, Metasurface, and Substrate Integrated Waveguide Principles for Millimeter-Waves and Terahertz Integrated Circuits and Systems
  • 2022
  • Ingår i: IEEE Access. - : Institute of Electrical and Electronics Engineers (IEEE). - 2169-3536. ; 10, s. 3668-3692
  • Tidskriftsartikel (refereegranskat)abstract
    • Antennas on-chip are a particular type of radiating elements valued for their small footprint. They are most commonly integrated in circuit boards to electromagnetically interface free space, which is necessary for wireless communications. Antennas on-chip radiate and receive electromagnetic (EM) energy as any conventional antennas, but what distinguishes them is their miniaturized size. This means they can be integrated inside electronic devices. Although on-chip antennas have a limited range, they are suitable for cell phones, tablet computers, headsets, global positioning system (GPS) devices, and WiFi and WLAN routers. Typically, on-chip antennas are handicapped by narrow bandwidth (less than 10%) and low radiation efficiency. This survey provides an overview of recent techniques and technologies investigated in the literature, to implement high performance on-chip antennas for millimeter-waves (mmWave) and terahertz (THz) integrated-circuit (IC) applications. The technologies discussed here include metamaterial (MTM), metasurface (MTS), and substrate integrated waveguides (SIW). The antenna designs described here are implemented on various substrate layers such as Silicon, Graphene, Polyimide, and GaAs to facilitate integration on ICs. Some of the antennas described here employ innovative excitation mechanisms, for example comprising open-circuited microstrip-line that is electromagnetically coupled to radiating elements through narrow dielectric slots. This excitation mechanism is shown to suppress surface wave propagation and reduce substrate loss. Other techniques described like SIW are shown to significantly attenuate surface waves and minimise loss. Radiation elements based on the MTM and MTS inspired technologies are shown to extend the effective aperture of the antenna without compromising the antenna's form factor. Moreover, the on-chip antennas designed using the above technologies exhibit significantly improved impedance match, bandwidth, gain and radiation efficiency compared to previously used technologies. These features make such antennas a prime candidate for mmWave and THz on-chip integration. This review provides a thorough reference source for specialist antenna designers.
  •  
7.
  • Alibakhshikenari, Mohammad, et al. (författare)
  • An innovative antenna array with high inter element isolation for sub-6 GHz 5G MIMO communication systems
  • 2022
  • Ingår i: Scientific Reports. - : NATURE PORTFOLIO. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel technique is shown to improve the isolation between radiators in antenna arrays. The proposed technique suppresses the surface-wave propagation and reduces substrate loss thereby enhancing the overall performance of the array. This is achieved without affecting the antenna's footprint. The proposed approach is demonstrated on a four-element array for 5G MIMO applications. Each radiating element in the array is constituted from a 3 x 3 matrix of interconnected resonant elements. The technique involves (1) incorporating matching stubs within the resonant elements, (2) framing each of the four-radiating elements inside a dot-wall, and (3) defecting the ground plane with dielectric slots that are aligned under the dot-walls. Results show that with the proposed approach the impedance bandwidth of the array is increased by 58.82% and the improvement in the average isolation between antennas #1&2, #1&3, #1&4 are 8 dB, 14 dB, 16 dB, and 13 dB, respectively. Moreover, improvement in the antenna gain is 4.2% and the total radiation efficiency is 23.53%. These results confirm the efficacy of the technique. The agreement between the simulated and measured results is excellent. Furthermore, the manufacture of the antenna array using the proposed approach is relatively straightforward and cost effective.
  •  
8.
  •  
9.
  • Moghadasi, Ramin, et al. (författare)
  • Pore-scale characterization of residual gas remobilization in CO2 geological storage
  • 2023
  • Ingår i: Advances in Water Resources. - : Elsevier. - 0309-1708 .- 1872-9657. ; 179
  • Tidskriftsartikel (refereegranskat)abstract
    • A decrease in reservoir pressure can lead to remobilization of residually trapped CO2. In this study, the pore-scale processes related to trapped CO2 remobilization under pressure depletion were investigated with the use of highresolution 3D X-ray microtomography. The distribution of CO2 in the pore space of Bentheimer sandstone was measured after waterflooding at a fluid pressure of 10 MPa, and then at pressures of 8, 6 and 5 MPa. At each stage CO2 was produced, implying that swelling of the gas phase and exsolution allowed the gas to reconnect and flow. After production, the gas reached a new position of equilibrium where it may be trapped again. At the end of the experiment, we imaged the sample again after 30 hours. Firstly, the results showed that an increase in saturation beyond the residual value was required to remobilize the gas, which is consistent with earlier field-scale results. Additionally, Ostwald ripening and continuing exsolution lead to a significant change in fluid saturation: transport of dissolved gas in the aqueous phase to equilibriate capillary pressure led to reconnection of the gas and its flow upwards under gravity. The implications for CO2 storage are discussed: an increase in saturation beyond the residual value is required to mobilize the gas, but Ostwald ripening can allow local reconnection of hitherto trapped gas, thus enhancing migration and may reduce the amount of CO2 that can be capillary trapped in storage operations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy