SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mohamed Mohamed Abdel Moneim) "

Sökning: WFRF:(Mohamed Mohamed Abdel Moneim)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lindh, Anders, et al. (författare)
  • A model for granite evolution based on non-equilibrium magma separation : evidence from the Gharib and Qattar fluorite-bearing granites, Eastern Desert, Egypt
  • 2019
  • Ingår i: International Journal of Earth Sciences. - : Springer Science and Business Media LLC. - 1437-3254 .- 1437-3262. ; 108:4, s. 1201-1232
  • Tidskriftsartikel (refereegranskat)abstract
    • We present 77 new granite whole-rock analyses from the Qattar and Gharib areas, Eastern Desert, Egypt. Both areas include a “normal” granite and either a hypersolvus (Gharib) or an almost plagioclase-free granite (Qattar) enriched in fluorite. According to earlier results, F influences element distribution in granitic melts forming complexes with specific elements as Nb, Ta, Ga, Hf, Th, Zn, Sn, whereas F excludes Ba and Sr. We use principal component analyses to split the granite into chemical groups allowing an unbiased study of the inter-group element distribution. This adds the heavy REEs and Y to the earlier lists of elements with an affinity for F. The light REEs show a decreasing affinity with decreasing atomic mass; fluorine separates Sm from Nd, whereas Zr follows La. Opposite to some, but in accordance with other earlier results, the ratio Nb/Ta is higher in the fluorite-enriched than in the other granite. Weak tetrad effects are present. Zircon in the hypersolvus granite is high in common lead. We suggest F to be instrumental for separating Pb 2+ from Pb 4+ . Two hypotheses may explain the occurrence of the two contrasting granites: they have either different sources, or they are co-magmatic, but the magma was split into two discrete types. We apply the second hypothesis as our working hypothesis. The liquidus has a gentler slope with pressure than the diapir requiring crystallisation to be most important in the lower part of the magma chamber. Our hypothesis suggests that globules of magma, enriched in volatile components, form during crystallisation due to slow diffusion rates in the crystallizing magma. Elements accompanying F are distributed into this magma batch, which has a lowered density and viscosity than the rest of the magma due to its increased contents of volatile components. A mushroom-formed diapir rises, forming the hypersolvus (or almost plagioclase-free) granite. Due to an edge effect, it is concentrated close to the wall of the magma chamber. The size and form of the outcropping granite depend on the intersection of the diapir with the erosion surface. Fluorine only makes it possible to follow the process. The model may be generalised to explain the diversification of non-F enriched granite, since the buoyancy of a magma batch several thousand m 3 in size has a much larger impact on the system than the small negative buoyancy of crystals or small crystal aggregates. A-type granite classified merely from its trace element content may form from separated F-enriched magma batches. This may be the reason for their high frequency in the Eastern Desert.
  •  
2.
  • 2021
  • swepub:Mat__t
  •  
3.
  • Abd El-Hakim, Abou El Fettouh Abd El Moneim, et al. (författare)
  • Improving the mechanical and thermal properties of chlorinated poly(vinyl chloride) by incorporating modified CaCO3 nanoparticles as a filler
  • 2019
  • Ingår i: Turkish journal of chemistry. - : The Scientific and Technological Research Council of Turkey (TUBITAK-ULAKBIM) - DIGITAL COMMONS JOURNALS. - 1300-0527 .- 1303-6130. ; 43:3, s. 750-759
  • Tidskriftsartikel (refereegranskat)abstract
    • Chlorinated poly(vinyl chloride) (CPVC)/calcium carbonate nanocomposites were successfully prepared by the incorporation of calcium carbonate (CaCO3) nanoparticles into the CPVC matrix. The compatibility between the two phases was obtained by surface modification of the CaCO3 nanoparticles with stearic acid, leading to improved material performance. The effects of the addition of different amounts of CaCO3 nanoparticles to the CPVC on the thermal, mechanical, and morphological characteristics of the CPVC/CaCO3 nanocomposites were investigated. The thermal stability of the CPVC/CaCO3 nanocomposites was evaluated by thermogravimetric analysis and differential scanning calorimetry. In addition, the surface texture of the CPVC and the dispersion of the CaCO3 were evaluated using scanning electron microscopy. Important enhancements in the thermal and mechanical properties of the modified CPVC/CaCO3 nanocomposites were obtained by incorporating different amounts (2.00%, 3.75%, and 5.75%) of surface-modified CaCO3 nanoparticles within the CPVC polymer matrix. The results reveal that 3.75% of CaCO3 was the optimum amount, where the CPVC/CaCO3 nanocomposite shows the highest impact strength, the highest tensile strength, the highest thermal stability, and the lowest elongation percentage. Replacement of the commercial impact modifier used in industry with the prepared surface-modified CaCO3 nanoparticles for the development of CPVC was successfully achieved.
  •  
4.
  • Malik, Yashpal S., et al. (författare)
  • SARS-CoV-2 Spike Protein Extrapolation for COVID Diagnosis and Vaccine Development
  • 2021
  • Ingår i: Frontiers in Molecular Biosciences. - : Frontiers Media S.A.. - 2296-889X. ; 8
  • Forskningsöversikt (refereegranskat)abstract
    • Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to coronavirus disease 2019 (COVID-19) pandemic affecting nearly 71.2 million humans in more than 191 countries, with more than 1.6 million mortalities as of 12 December, 2020. The spike glycoprotein (S-protein), anchored onto the virus envelope, is the trimer of S-protein comprised of S1 and S2 domains which interacts with host cell receptors and facilitates virus-cell membrane fusion. The S1 domain comprises of a receptor binding domain (RBD) possessing an N-terminal domain and two subdomains (SD1 and SD2). Certain regions of S-protein of SARS-CoV-2 such as S2 domain and fragment of the RBD remain conserved despite the high selection pressure. These conserved regions of the S-protein are extrapolated as the potential target for developing molecular diagnostic techniques. Further, the S-protein acts as an antigenic target for different serological assay platforms for the diagnosis of COVID-19. Virus-specific IgM and IgG antibodies can be used to detect viral proteins in ELISA and lateral flow immunoassays. The S-protein of SARS-CoV-2 has very high sequence similarity to SARS-CoV-1, and the monoclonal antibodies (mAbs) against SARS-CoV-1 cross-react with S-protein of SARS-CoV-2 and neutralize its activity. Furthermore, in vitro studies have demonstrated that polyclonal antibodies targeted against the RBD of S-protein of SARS-CoV-1 can neutralize SARS-CoV-2 thus inhibiting its infectivity in permissive cell lines. Research on coronaviral S-proteins paves the way for the development of vaccines that may prevent SARS-CoV-2 infection and alleviate the current global coronavirus pandemic. However, specific neutralizing mAbs against SARS-CoV-2 are in clinical development. Therefore, neutralizing antibodies targeting SARS-CoV-2 S-protein are promising specific antiviral therapeutics for pre-and post-exposure prophylaxis and treatment of SARS-CoV-2 infection. We hereby review the approaches taken by researchers across the world to use spike gene and S-glycoprotein for the development of effective diagnostics, vaccines and therapeutics against SARA-CoV-2 infection the COVID-19 pandemic.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy