SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mohseni Simin 1959 ) "

Sökning: WFRF:(Mohseni Simin 1959 )

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jamali, Reza, 1967-, et al. (författare)
  • Continuous glucose monitoring system signals the occurrence of marked postprandial hyperglycemia in the elderly
  • 2005
  • Ingår i: Diabetes Technology & Therapeutics. - : Mary Ann Liebert Inc. - 1520-9156 .- 1557-8593. ; 7:3, s. 509-515
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The aim of this study was to ascertain whether dysglycemic episodes occur in institutionalized elderly persons and, if that is the case, to determine whether such episodes are related to meal patterns. Another objective was to investigate the feasibility of subcutaneous (s.c.) glucose measurements in the elderly using a Medtronic MiniMed (Sylmar, CA) continuous glucose monitoring system (CGMS®). Methods: Nine nursing home residents (74-95 years old) without known diabetes or other metabolic disorders were included. The s.c. glucose level was measured for 3 days with the Medtronic MiniMed CGMS. Capillary blood glucose was measured four times daily with a Glucometer Elite® device (Bayer, Leverkusen, Germany). Body mass index and basal metabolic rate were calculated, and food intake was recorded. Results: The s.c. glucose level fluctuated noticeably over time, 22.5% of the values recorded during the 3-day period were ≥8 mmol/L, and values <3.5 mmol/L were rarely seen. A marked (>5 mmol/L) and short-term (2-4 h) increase in s.c. glucose was seen after a meal. The mean capillary blood glucose concentration was 7.5 ± 1.8 mmol/L. Capillary blood glucose ≥8 mmol/L was recorded on 32.5% of the measurement occasions, and no values were <3.5 mmol/L. The s.c. glucose values agreed with corresponding capillary blood glucose levels (mean r = 0.75, range 0.43-0.86). Five participants consumed less energy than recommended according to their age, weight, and physical activity level. Conclusions: Postprandial hyperglycemia frequently occurs in elderly people living in nursing homes. The CGMS is convenient to use to detect hyperglycemia in this age group.
  •  
2.
  •  
3.
  • Mirrasekhian, Elahe, 1978- (författare)
  • Immune-to-Brain Signaling in Fever : The Brain Endothelium as Interface
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Fever is a brain-regulated elevation of body temperature that occurs in response to infectious and non-infectious stimuli. During inflammatory episodes, circulating cytokines that are released by activated immune cells, trigger the induction of cyclooxygenase (COX)-2 in the ventromedial preoptic area of the hypothalamus (the thermoregulation center). COX-2-dependent-prostaglandin (PG)E2 synthesis is essential for the generation of fever and upon an immune challenge, it is induced in several cells within the brain including the brain endothelial cells and perivascular macrophages. However, due to lack of experimental models with cell type-specific modulation of PGE2 synthesizing enzymes, the cellular source of pyrogenic PGE2 and its induction mechanism(s) remained obscure. Using such technology, we showed that the brain endothelium is the cellular source of pyrogenic PGE2 and that activation of brain endothelial IL-6 receptors by circulating IL-6 is critical for the PGE2 induction.Inhibition of PGE2 synthesis is assumed to be the mode of action of many antipyretic drugs, possibly including paracetamol. Given that paracetamol at a high dose has been shown to induce hypothermia by activation of the transient receptor potential ankyrin 1 (TRPA1) ion channel, we examined whether the antipyretic effect of paracetamol is also TRPA1 dependent. Our findings revealed that the antipyretic effect of paracetamol is independent of TRPA1 and associated with inhibition of the PGE2 synthesis in the brain.This thesis provides new insight into the molecular mechanism behind the febrile response in which the peripheral circulating IL-6 communicates with the brain by induction of pyrogenic PGE2 in the brain endothelium. It also demonstrates that the antipyretic effect of paracetamol is exerted by inhibition of the PGE2 synthesis in the brain.
  •  
4.
  • Mohseni, Simin, 1959- (författare)
  • Hypoglycaemic neuropathy : Experimental studies in diabetic rats treated witn insulin implants
  • 2000
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Insulin dependent diabetes mellitus is a metabolic disease that causes secondary complications such as peripheral neuropathy. it is generally believed that diabetic neuropathy is due to chronic hyperglycaemia. In order to understand the pathophysiology of diabetic neuropathy many workers have examined nerves from diabetic rats. While most workers say that animals with high blood glucose levels develop neuropathy, some investigators report that the peripheral nerves are normal in hyperglycaemic rats. Hypoglycaemia may also cause neuropathy. The general aim of the present study is to examine the long-term relation between glycaemia and peripheral neuropathy in diabetic BB/Wor rats. This necessitated establishment of a treatment regime allowing long-term survival of these sick animals.We found that maintenance of diabetic BB/Wor rats on an eu/hyperglycaemic or an eu-/hypoglycaemic regime with insulin implants worked well for our purpose.Unexpectedly, light and electron microscopic examination of plantar nerves in eu-/hyperglycaemic diabetic rats showed a normal picture. But, nerves from eu-/hypoglycemic rats showed severe qualitative changes, interpreted as axonal de- and regeneration. The total number of axons  was subnormal and the myelinated fibres were shifted towards smaller diameters. Hence, eu-/hypoglycaemic diabetic BB/Wor rats but not eu-/hyperglycaemic animals, develop a neuropathy in their plantar nerves.The immunohistochemical occurrence of epidermal protein gene product 9.5 immunoreactive axon profiles was normal in heel skin biopsies from eu/hypoglycaemic rats, but many profiles were short and thin. The content of the neuropeptide calcitonin gene-related peptide in skin biopsies was subnormal. The occurrence of end plate axon terminals labeled with antibodies against the vesicular acetylcholine transporter protein was subnormal in sections from a plantar muscle of eu-/hypoglycaemic rats. Moreover, the end plate axon terminals were abnormally small. Hence, the hypoglycaemic neuropathy seen in plantar nerve trunks of diabetic BB/Wor rats treated with insulin implants is accompanied by mild alterations in the epidermal innervation of plantar skin and a more obviously abnormal nerve terminal pattern in plantar muscle.Electron microscopic examination of L5 dorsal roots from eu/hypoglycaemic rats showed a normal morphology and normal numbers of axons. In L5 ventral roots the picture varied: in 2 rats it was normal and 3 rats showed signs of axonal degeneration. The L5 dorsal root ganglion and the L5 ventral horn showed a normal picture. Hence, eu-/hypoglycaemia affects ventral root axons but not dorsal root axons. Moreover, the degree of ventral root pathology is variable and sensory and motor neuron perikarya are not affected.
  •  
5.
  • Mohseni, Simin, 1959-, et al. (författare)
  • Hypoglycaemic neuropathy : Occurrence of axon terminals in plantar skin and plantar muscle of diabetic BB/Wor rats treated with insulin implants
  • 2000
  • Ingår i: Acta Neuropathologica. - 0001-6322 .- 1432-0533. ; 99:3, s. 257-262
  • Tidskriftsartikel (refereegranskat)abstract
    • It is generally believed that diabetic neuropathy is due to chronic hyperglycaemia. However, experience from insulinoma patients and experimental studies show that hypoglycaemia may also cause neuropathy. Accordingly, the plantar nerves of diabetic eu-/hypoglycaemic BB/Wor rats treated with insulin implants exhibit a distinct neuropathy. To what extent hypoglycaemic neuropathy affects axon terminals in skin and muscle is unknown. In the present study we examine the occurrence of epidermal axon profiles and the neuropeptide calcitonin gene-related peptide (CGRP) in plantar skin, and of end plate axon terminals in a plantar muscle of diabetic BB/Wor rats subjected to long periods of hypoglycaemia. The number of protein gene product-immunoreactive axon profiles was found to be normal in heel skin biopsy specimens from eu-/hypoglycaemic rats, but many profiles were short and thin. The content of CGRP in the skin biopsy samples was significantly below normal. After staining with antibodies against the vesicular acetylcholine transporter protein, the occurrence of end plate axon terminals was significantly reduced in sections from the flexor hallucis brevis muscle of eu-/hypoglycaemic rats. Moreover, the end plate axon terminals tended to be abnormally small in these rats. We conclude that the hypoglycaemic neuropathy seen in plantar nerve trunks of diabetic BB/Wor rats treated with insulin implants is accompanied by mild alterations in the epidermal innervation of plantar skin and a more obviously abnormal nerve terminal pattern in plantar muscle.
  •  
6.
  • Mohseni, Simin, 1959- (författare)
  • Hypoglycaemic neuropathy in diabetic BB/Wor rats treated with insulin implants affects ventral root axons but not dorsal root axons
  • 2000
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 100:4, s. 415-420
  • Tidskriftsartikel (refereegranskat)abstract
    • It is believed that hyperglycaemia underlies diabetic neuropathy. However, low blood glucose values may also cause pathological changes in peripheral nerves and in neuronal perikarya. This study examined spinal roots, dorsal root ganglia and the ventral horn at the segmental level L5 in long-term insulin-treated eu-/hypoglycaemic diabetic rats with an obvious plantar nerve pathology. The purpose was to determine whether hypoglycaemic neuropathy affects sensory and/or motor neurons at root and/or perikaryal levels. Electron microscopic examination of dorsal roots from eu-/hypoglycaemic rats showed a normal qualitative morphology and normal numbers of unmyelinated and myelinated axons. In ventral roots the picture varied. Whereas two rats exhibited an essentially normal morphology, three rats presented moderate or marked signs of pathology such as clusters of small and medium-sized myelinated axons, medium-sized myelinated axons with abnormally thin sheaths, large unmyelinated axons and signs of past or ongoing axonal degeneration. Light microscopic examination of the L5 dorsal root ganglion and ventral horn showed a qualitatively normal picture in eu-/hypoglycaemic rats and the mean number of large ventral horn neurons per section was normal. These results suggest that the type of eu-/hypoglycaemia examined here affects ventral root axons but not dorsal root axons, that the degree of ventral root pathology is variable and that sensory and motor neuron perikarya do not appear to be affected.
  •  
7.
  • Osman, Ayman (författare)
  • Autophagy in Peripheral Neuropathy
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Peripheral neuropathy includes a wide range of diseases affecting millions around the world, and many of these diseases have unknown etiology. Peripheral neuropathy in diabetes represents a large proportion of peripheral neuropathies. Nerve damage can also be caused by trauma. Peripheral neuropathies are a significant clinical problem and efficient treatments are largely lacking. In the case of a transected nerve, different methods have been used to repair or reconstruct the nerve, including the use of nerve conduits, but functional recovery is usually poor.Autophagy, a cellular mechanism that recycles damaged proteins, is impaired in the brain in many neurodegenerative diseases affecting animals and humans. No research, however, has investigated the presence of autophagy in the human peripheral nervous system. In this study, I present the first structural evidence of autophagy in human peripheral nerves. I also show that the density of autophagy structures is higher in peripheral nerves of patients with chronic idiopathic axonal polyneuropathy (CIAP) and inflammatory neuropathy than in controls. The density of these structures increases with the severity of the neuropathy.In animal model, using Goto-Kakizaki (GK) rats with diabetes resembling human type 2 diabetes, activation of autophagy by local administration of rapamycin incorporated in collagen conduits that were used for reconnection of the transected sciatic nerve led to an increase in autophagy proteins LC3 and a decrease in p62 suggesting that the autophagic flux was activated. In addition, immunoreactivity of neurofilaments, which are parts of the cytoskeleton of axons, was increased indicating increased axonal regeneration. I also show that many proteins involved in axonal regeneration and cell survival were up-regulated by rapamycin in the injured sciatic nerve of GK rats four weeks after injury.Taken together, these findings provide new knowledge about the involvement of autophagy in neuropathy and after peripheral nerve injury and reconstruction using collagen conduits.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy