SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Molin Mikael 1973) "

Sökning: WFRF:(Molin Mikael 1973)

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Molin, Mikael, 1973, et al. (författare)
  • Protein kinase A controls yeast growth in visible light
  • 2020
  • Ingår i: BMC Biology. - : Springer Science and Business Media LLC. - 1741-7007. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A wide variety of photosynthetic and non-photosynthetic species sense and respond to light, having developed protective mechanisms to adapt to damaging effects on DNA and proteins. While the biology of UV light-induced damage has been well studied, cellular responses to stress from visible light (400–700 nm) remain poorly understood despite being a regular part of the life cycle of many organisms. Here, we developed a high-throughput method for measuring growth under visible light stress and used it to screen for light sensitivity in the yeast gene deletion collection. Results: We found genes involved in HOG pathway signaling, RNA polymerase II transcription, translation, diphthamide modifications of the translational elongation factor eEF2, and the oxidative stress response to be required for light resistance. Reduced nuclear localization of the transcription factor Msn2 and lower glycogen accumulation indicated higher protein kinase A (cAMP-dependent protein kinase, PKA) activity in many light-sensitive gene deletion strains. We therefore used an ectopic fluorescent PKA reporter and mutants with constitutively altered PKA activity to show that repression of PKA is essential for resistance to visible light. Conclusion: We conclude that yeast photobiology is multifaceted and that protein kinase A plays a key role in the ability of cells to grow upon visible light exposure. We propose that visible light impacts on the biology and evolution of many non-photosynthetic organisms and have practical implications for how organisms are studied in the laboratory, with or without illumination.
  •  
2.
  • Bodvard, Kristofer, 1981, et al. (författare)
  • Light-sensing via hydrogen peroxide and a peroxiredoxin
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Yeast lacks dedicated photoreceptors; however, blue light still causes pronounced oscillations of the transcription factor Msn2 into and out of the nucleus. Here we show that this poorly understood phenomenon is initiated by a peroxisomal oxidase, which converts light into a hydrogen peroxide (H2O2) signal that is sensed by the peroxiredoxin Tsa1 and transduced to thioredoxin, to counteract PKA-dependent Msn2 phosphorylation. Upon H2O2, the nuclear retention of PKA catalytic subunits, which contributes to delayed Msn2 nuclear concentration, is antagonized in a Tsa1-dependent manner. Conversely, peroxiredoxin hyperoxidation interrupts the H2O2 signal and drives Msn2 oscillations by superimposing on PKA feedback regulation. Our data identify a mechanism by which light could be sensed in all cells lacking dedicated photoreceptors. In particular, the use of H2O2 as a second messenger in signalling is common to Msn2 oscillations and to light-induced entrainment of circadian rhythms and suggests conserved roles for peroxiredoxins in endogenous rhythms.
  •  
3.
  • Barré, Benjamin P., et al. (författare)
  • Intragenic repeat expansion in the cell wall protein gene HPF1 controls yeast chronological aging
  • 2020
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 30:5, s. 697-710
  • Tidskriftsartikel (refereegranskat)abstract
    • Aging varies among individuals due to both genetics and environment, but the underlying molecular mechanisms remain largely unknown. Using a highly recombined Saccharomyces cerevisiae population, we found 30 distinct quantitative trait loci (QTLs) that control chronological life span (CLS) in calorie-rich and calorie-restricted environments and under rapamycin exposure. Calorie restriction and rapamycin extended life span in virtually all genotypes but through different genetic variants. We tracked the two major QTLs to the cell wall glycoprotein genes FLO11 and HPF1. We found that massive expansion of intragenic tandem repeats within the N-terminal domain of HPF1 was sufficient to cause pronounced life span shortening. Life span impairment by HPF1 was buffered by rapamycin but not by calorie restriction. The HPF1 repeat expansion shifted yeast cells from a sedentary to a buoyant state, thereby increasing their exposure to surrounding oxygen. The higher oxygenation altered methionine, lipid, and purine metabolism, and inhibited quiescence, which explains the life span shortening. We conclude that fast-evolving intragenic repeat expansions can fundamentally change the relationship between cells and their environment with profound effects on cellular lifestyle and longevity.
  •  
4.
  •  
5.
  • Bodvard, Kristofer, 1981, et al. (författare)
  • The Yeast Transcription Factor Crz1 Is Activated by Light in a Ca2+/Calcineurin-Dependent and PKA-Independent Manner
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Light in the visible range can be stressful to non-photosynthetic organisms. The yeast Saccharomyces cerevisiae has earlier been reported to respond to blue light via activation of the stress-regulated transcription factor Msn2p. Environmental changes also induce activation of calcineurin, a Ca2+/calmodulin dependent phosphatase, which in turn controls gene transcription by dephosphorylating the transcription factor Crz1p. We investigated the connection between cellular stress caused by blue light and Ca2+ signalling in yeast by monitoring the nuclear localization dynamics of Crz1p, Msn2p and Msn4p. The three proteins exhibit distinctly different stress responses in relation to light exposure. Msn2p, and to a lesser degree Msn4p, oscillate rapidly between the nucleus and the cytoplasm in an apparently stochastic fashion. Crz1p, in contrast, displays a rapid and permanent nuclear localization induced by illumination, which triggers Crz1p-dependent transcription of its target gene CMK2. Moreover, increased extracellular Ca2+ levels stimulates the light-induced responses of all three transcription factors, e. g. Crz1p localizes much quicker to the nucleus and a larger fraction of cells exhibits permanent Msn2p nuclear localization at higher Ca2+ concentration. Studies in mutants lacking Ca2+ transporters indicate that influx of extracellular Ca2+ is crucial for the initial stages of light-induced Crz1p nuclear localization, while mobilization of intracellular Ca2+ stores appears necessary for a sustained response. Importantly, we found that Crz1p nuclear localization is dependent on calcineurin and the carrier protein Nmd5p, while not being affected by increased protein kinase A activity (PKA), which strongly inhibits light-induced nuclear localization of Msn2/4p. We conclude that the two central signalling pathways, cAMP-PKA-Msn2/4 and Ca2+-calcineurin-Crz1, are both activated by blue light illumination.
  •  
6.
  • Chawla, Srishti, 1986, et al. (författare)
  • Calcineurin stimulation by Cnb1p overproduction mitigates protein aggregation and α-synuclein toxicity in a yeast model of synucleinopathy
  • 2023
  • Ingår i: Cell Communication and Signaling. - 1478-811X. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The calcium-responsive phosphatase, calcineurin, senses changes in Ca2+ concentrations in a calmodulin-dependent manner. Here we report that under non-stress conditions, inactivation of calcineurin signaling or deleting the calcineurin-dependent transcription factor CRZ1 triggered the formation of chaperone Hsp100p (Hsp104p)-associated protein aggregates in Saccharomyces cerevisiae. Furthermore, calcineurin inactivation aggravated α-Synuclein-related cytotoxicity. Conversely, elevated production of the calcineurin activator, Cnb1p, suppressed protein aggregation and cytotoxicity associated with the familial Parkinson’s disease-related mutant α-Synuclein A53T in a partly CRZ1-dependent manner. Activation of calcineurin boosted normal localization of both wild type and mutant α-synuclein to the plasma membrane, an intervention previously shown to mitigate α-synuclein toxicity in Parkinson’s disease models. The findings demonstrate that calcineurin signaling, and Ca2+ influx to the vacuole, limit protein quality control in non-stressed cells and may have implications for elucidating to which extent aberrant calcineurin signaling contributes to the progression of Parkinson’s disease(s) and other synucleinopathies. [MediaObject not available: see fulltext.].
  •  
7.
  • Logg, Katarina, 1979, et al. (författare)
  • High-throughput Growth Measurements of Yeast Exposed to Visible Light
  • 2022
  • Ingår i: Bio-Protocol. - 2331-8325. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Light is a double-edged sword: it is essential for life on the planet but also causes cellular damage and death. Consequently, organisms have evolved systems not only for harvesting and converting light energy into chemical energy but also for countering its toxic effects. Despite the omnipresence and importance of such light-dependent effects, there are very few unbiased genetic screens, if any, investigating the mechanistic consequences that visible light has on cells. Baker's yeast, Saccharomyces cerevisiae, is one of the best annotated organisms thanks to several easily available mutant collections and its amenability to high-throughput genetic screening. However, until recently this yeast was thought to lack receptors for visible light, therefore its response to visible light was poorly understood. Nevertheless, a couple of years ago it was discovered that yeast senses light via a novel and unconventional pathway involving a peroxisomal oxidase, hydrogen peroxide, and a particular type of antioxidant protein, called peroxiredoxin. Here, we describe in detail a protocol for scoring yeast genes involved in the resistance to visible light (400-700 nm) on a genome-wide scale. Because cells in dense cultures shield each other from light exposure, resulting in apparent light resistance, our method involves adaptations to reduce inoculum size under conditions amenable to high-throughput screens, to properly be able to identify light-sensitive mutants. We also describe how to measure growth in the presence of light, including two follow-up validation tests. In this way, this method makes it possible to score light-sensitivity on a genome-wide scale with high confidence.
  •  
8.
  • Parts, Leopold, et al. (författare)
  • Revealing the genetic structure of a trait by sequencing a population under selection.
  • 2011
  • Ingår i: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 21:7, s. 1131-8
  • Tidskriftsartikel (refereegranskat)abstract
    • One approach to understanding the genetic basis of traits is to study their pattern of inheritance among offspring of phenotypically different parents. Previously, such analysis has been limited by low mapping resolution, high labor costs, and large sample size requirements for detecting modest effects. Here, we present a novel approach to map trait loci using artificial selection. First, we generated populations of 10-100 million haploid and diploid segregants by crossing two budding yeast strains of different heat tolerance for up to 12 generations. We then subjected these large segregant pools to heat stress for up to 12 d, enriching for beneficial alleles. Finally, we sequenced total DNA from the pools before and during selection to measure the changes in parental allele frequency. We mapped 21 intervals with significant changes in genetic background in response to selection, which is several times more than found with traditional linkage methods. Nine of these regions contained two or fewer genes, yielding much higher resolution than previous genomic linkage studies. Multiple members of the RAS/cAMP signaling pathway were implicated, along with genes previously not annotated with heat stress response function. Surprisingly, at most selected loci, allele frequencies stopped changing before the end of the selection experiment, but alleles did not become fixed. Furthermore, we were able to detect the same set of trait loci in a population of diploid individuals with similar power and resolution, and observed primarily additive effects, similar to what is seen for complex trait genetics in other diploid organisms such as humans.
  •  
9.
  • Stenberg, Simon, et al. (författare)
  • Control of mitochondrial superoxide production includes programmed mtDNA deletion and restoration
  • 2020
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Deletion of mitochondrial DNA in eukaryotes is mainly attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that the regulatory circuitry underlying this editing critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. Our results may therefore be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.One-Sentence SummaryGenetically controlled editing of mitochondrial DNA is an integral part of the yeast’s defenses against oxidative damage.
  •  
10.
  • Stenberg, Simon, et al. (författare)
  • Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative phosphorylation
  • 2022
  • Ingår i: eLife. - : eLife Sciences Publications, Ltd. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Deletion of mitochondrial DNA in eukaryotes is currently attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that this process critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication through Rtg2 and Rtg3. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. This shows that oxidative stress-induced mitochondrial impairment may be under strict regulatory control. If the results extend to human cells, the results may prove to be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35
Typ av publikation
tidskriftsartikel (31)
forskningsöversikt (2)
konferensbidrag (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (32)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Molin, Mikael, 1973 (35)
Blomberg, Anders, 19 ... (7)
Nyström, Thomas, 196 ... (7)
Warringer, Jonas, 19 ... (5)
Käll, Mikael, 1963 (4)
Liu, Beidong, 1972 (3)
visa fler...
Li, Jing (3)
Grøtli, Morten, 1966 (3)
Zackrisson, Martin (3)
Stenberg, Simon (3)
Sunnerhagen, Per, 19 ... (2)
Andersson, Mikael (2)
Ghiaci, Payam (2)
Bengtsson-Palme, Joh ... (1)
Ahmadpour, Doryaneh, ... (1)
Alm Rosenblad, Magnu ... (1)
Hao, Xinxin (1)
Molin, M (1)
Kumar, Navinder, 198 ... (1)
Nyström, Thomas, 197 ... (1)
Sjölander, Johanna J ... (1)
Alder-Rangel, Alene (1)
Idnurm, Alexander (1)
Brand, Alexandra C. (1)
Brown, Alistair J.P. (1)
Gorbushina, Anna (1)
Kelliher, Christina ... (1)
Campos, Claudia B. (1)
Levin, David E. (1)
Bell-Pedersen, Debor ... (1)
Dadachova, Ekaterina (1)
Bauer, F. F. (1)
Gadd, Geoffrey M. (1)
Braus, G. H. (1)
Braga, Gilberto U.L. (1)
Brancini, Guilherme ... (1)
Walker, Graeme M. (1)
Druzhinina, Irina (1)
Pócsi, István (1)
Dijksterhuis, Jan (1)
Aguirre, Jesús (1)
Hallsworth, John E. (1)
Schumacher, Julia (1)
Wong, Koon Ho (1)
Selbmann, Laura (1)
Corrochano, L. M. (1)
Kupiec, Martin (1)
Momany, Michelle (1)
Requena, Natalia (1)
Yarden, Oded (1)
visa färre...
Lärosäte
Göteborgs universitet (26)
Chalmers tekniska högskola (20)
Högskolan i Gävle (1)
Språk
Engelska (35)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (31)
Medicin och hälsovetenskap (17)
Teknik (2)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy