SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mollen A) "

Sökning: WFRF:(Mollen A)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Buller, Stefan, 1991, et al. (författare)
  • Collisional transport of impurities with flux-surface varying density in stellarators
  • 2018
  • Ingår i: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 84:4
  • Tidskriftsartikel (refereegranskat)abstract
    • High-Z impurities in magnetic-confinement devices are prone to develop density variations on the flux surface, which can significantly affect their transport. In this paper, we generalize earlier analytic stellarator calculations of the neoclassical radial impurity flux in the mixed-collisionality regime (collisional impurities and low-collisionality bulk ions) to include the effect of such flux-surface variations. We find that only in the homogeneous density case is the transport of highly collisional impurities (in the Pfirsch-Schlhter regime) independent of the radial electric field. We study these effects for a Wendelstein 7-X (W7-X) vacuum field, with simple analytic models for the potential perturbation, under the assumption that the impurity density is given by a Boltzmann response to a perturbed potential. In the W7-X case studied, we find that larger amplitude potential perturbations cause the radial electric field to dominate the transport of the impurities. In addition, we find that classical impurity transport can be larger than the neoclassical transport in W7-X.
  •  
4.
  • Mollén, Christopher, 1987- (författare)
  • High-End Performance with Low-End Hardware : Analysis of Massive MIMO Base Station Transceivers
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Massive MIMO (multiple-input–multiple-output) is a multi-antenna technology for cellular wireless communication, where the base station uses a large number of individually controllable antennas to multiplex users spatially.  This technology can provide a high spectral efficiency.  One of its main challenges is the immense hardware complexity and cost of all the radio chains in the base station.  To make massive MIMO commercially viable, inexpensive, low-complexity hardware with low linearity has to be used, which inherently leads to more signal distortion.  This thesis investigates how the degenerated linearity of some of the main components—power amplifiers, analog-to-digital converters (ADCs) and low-noise amplifiers—affects the performance of the system, with respect to data rate, power consumption and out-of-band radiation. The main results are: Spatial processing can reduce PAR (peak-to-average ratio) of the transmit signals in the downlink to as low as 0B; this, however, does not necessarily reduce power consumption.  In environments with isotropic fading, one-bit ADCs lead to a reduction in effective signal-to-interference-and-noise ratio (SINR) of 4dB in the uplink and four-bit ADCs give a performance close to that of an unquantized system.  An analytical expression for the radiation pattern of the distortion from nonlinear power amplifiers is derived.  It shows how the distortion is beamformed to some extent, that its gain never is greater than that of the desired signal, and that the gain of the distortion is reduced with a higher number of served users and a higher number of channel taps.  Nonlinear low-noise amplifiers give rise to distortion that partly combines coherently and limits the possible SINR.  It is concluded that spatial processing with a large number of antennas reduces the impact of hardware distortion in most cases.  As long as proper attention is paid to the few sources of coherent distortion, the hardware complexity can be reduced in massive MIMO base stations to overcome the hardware challenge and make massive MIMO commercial reality.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy