SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Monção Maxwel) "

Sökning: WFRF:(Monção Maxwel)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cayenne, Aadila, et al. (författare)
  • Enhancing the Methane Yield of Salicornia spp. via Organosolv Fractionation as Part of a Halophyte Biorefinery Concept
  • 2024
  • Ingår i: Energies. - : Multidisciplinary Digital Publishing Institute (MDPI). - 1996-1073. ; 17:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The present research investigated the effect of organosolv pretreatment on two species of salt-tolerant Salicornia spp. biomass, Salicornia dolichostachya and Salicornia ramosissima, for increasing biomethane production through anaerobic digestion. The final biomethane yield of de-juiced green fibers of Salicornia spp. from wet fractionation increased by 23–28% after organosolv treatment. The highest methane yield of about 300 mL-CH4/gVS was found after organosolv treatment with 60% v/v ethanol solution at 200 °C for 30 min, or at 180 °C for 30 or 60 min treatment time. Furthermore, the methane production rate increased significantly, reducing the time until 95% of the final methane yield was reached from 20 days to 6–10 days for the organosolv-treated biomass. This research shows that the process of anaerobic digestion of halophyte biomass benefits from cascade processing of Salicornia fibers in a biorefinery framework by sequential wet and organosolv fractionation for full utilization of halophytic biomass.
  •  
2.
  •  
3.
  • Moncao, Maxwel, et al. (författare)
  • A novel biorefinery concept based on marginally used halophyte biomass
  • 2023
  • Ingår i: Sustainable Energy & Fuels. - : Royal Society of Chemistry. - 2398-4902. ; 7:16, s. 3902-3918
  • Tidskriftsartikel (refereegranskat)abstract
    • Halophytes have major potential in biorefinery as these salt tolerant crops have prospects as an alternative biomass to meet energy demands and provide value-added products with reduced effects in terms of food security and environmental damage when compared to other crops. In this study, we investigated the effects of organosolv pretreatment process parameters on the fractionation of residual fibers from pressed Salicornia ramosissima and how it affects the fractions of cellulose, lignin, and hemicelluloses. Pretreated pulps contained as high as 48.95% w/w cellulose, a 2.9-fold increase from the untreated fibers. The delignification of pulp was as high as 75.01% and hemicellulose removal reached 96.38%. The hemicellulose fractions contained as high as 78.49% oligomers and we identified up to 30.4% linear xylooligosaccharides in the composition. The majority of the fragments of hemicelluloses had molecular weights lower than 1000 Da. Isolated lignin samples had in most cases very low sugar and ash contamination with a reduced molecular weight. The typical G-, S-, and H-type aromatic units were detected in the lignin, together with & beta;-O-4 & PRIME;, & beta;-5 & PRIME;, & beta;-& beta;& PRIME;, and dibenzodioxocine links. The results suggest a novel applicability of S. ramosissima in a biorefinery context with fractionation deriving building blocks for value added products.
  •  
4.
  • Monção, Maxwel, et al. (författare)
  • A Parametric Study of the Organosolv Fractionation of Norway Spruce Sawdust
  • 2024
  • Ingår i: Energies. - : MDPI. - 1996-1073. ; 17:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignocellulosic biomass represents an excellent alternative to fossil fuels in terms of both energy production and raw material usage for a plethora of daily-use products. Organosolv pretreatment is a fractionation technique able to separate lignocellulosic biomass into individual streams of cellulose, hemicellulose, and lignin under controlled conditions. Sawdust, the by-product of sawmill processing of Picea abies wood, was the subject of our investigation in this work. The aim was to evaluate the effects of different parameters of the organosolv process of spruce sawdust on the yield of components and how this affects the enzymatic saccharification of cellulose. Sixteen distinct pretreatments were performed with ethanol concentrations of 50 and 60% v/v at 180 and 200 °C for 15 and 30 min. Half of the pretreatments contained 1% sulfuric acid as a catalyst, while the other half were acid-free. Thereafter, the effects of different variables on the yield of products were assessed and compared to determine the ideal pretreatment condition. The results showed that cellulose-rich pulps, with cellulose content as high as 55% were generated from an initial mass of 37.7% spruce sawdust with the reactor operating at 180 °C for 30 min using 60% ethanol and 1% sulfuric acid. With the pretreatments performed with the catalyst at 200 °C, hemicellulose was almost entirely removed from the pulps obtained. The recovered hemicellulose fraction was composed mainly of monomers achieving up to 10 g/100 g of biomass. Delignification values of up to 65.7% were achieved with this pretreatment technique. Fractionated lignin presented low levels of sugar and ashes contamination, with values as low as 1.29% w/w. Enzymatic saccharification of the pretreated pulps yielded 78% cellulose hydrolysis, with glucose release higher than 0.54 g/g of biomass, indicating the potential of the pulps to be applied in a fermentation process.
  •  
5.
  • Monção, Maxwel, et al. (författare)
  • Organosolv Fractionation of Birch Sawdust: Establishing a Lignin-First Biorefinery
  • 2021
  • Ingår i: Molecules. - : MDPI. - 1431-5157 .- 1420-3049. ; 26:21, s. 6754-6754
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of residual biomass for bioconversions makes it possible to decrease the output of fossil-based chemicals and pursue a greener economy. While the use of lignocellulosic material as sustainable feedstock has been tried at pilot scale, industrial production is not yet economically feasible, requiring further technology and feedstock optimization. The aim of this study was to examine the feasibility of replacing woodchips with residual sawdust in biorefinery applications. Woodchips can be used in value-added processes such as paper pulp production, whereas sawdust is currently used mainly for combustion. The main advantages of sawdust are its large supply and a particle size sufficiently small for the pretreatment process. Whereas, the main challenge is the higher complexity of the lignocellulosic biomass, as it can contain small amounts of bark and cambium. Here, we studied the fractionation of birch sawdust by organosolv pretreatment at two different temperatures and for two different durations. We evaluated the efficiency of fractionation into the three main fractions: lignin, cellulose, and hemicellulose. The cellulose content in pretreated biomass was as high as 69.2%, which was nearly double the amount in untreated biomass. The obtained lignin was of high purity, with a maximum 4.5% of contaminating sugars. Subsequent evaluation of the susceptibility of pretreated solids to enzymatic saccharification revealed glucose yields ranging from 75% to 90% after 48 h but reaching 100.0% under the best conditions. In summary, birch sawdust can be successfully utilized as a feedstock for organosolv fractionation and replace woodchips to simplify and lower the costs of biorefinery processes.
  •  
6.
  • Moncao, Maxwel, et al. (författare)
  • Salicornia dolichostachya organosolv fractionation: towards establishing a halophyte biorefinery
  • 2022
  • Ingår i: RSC Advances. - : RSC Publishing. - 2046-2069. ; 12:44, s. 28599-28607
  • Tidskriftsartikel (refereegranskat)abstract
    • Halophytes are a potential source of lignocellulosic material for biorefinery, as they can be grown in areas unsuitable for the cultivation of crops aimed at food production. To enable the viable use of halophytes in biorefineries, the present study investigated how different organosolv process parameters affected the fractionation of green pressed fibers of Salicornia dolichostachya. We produced pretreated solids characterized by up to 51.3% +/- 1.7% cellulose, a significant increase from 25.6% +/- 1.3% in untreated fibers. A delignification yield of as high as 60.7%, and hemicellulose removal of as high as 86.1% were also achieved in the current study. The obtained cellulose could be completely converted to glucose via enzymatic hydrolysis within 24 h. The lignin fractions obtained were of high purity, with sugar contamination of only 1.22% w/w and ashes below 1% w/w in most samples. Finally, up to 29.1% +/- 0.4% hemicellulose was recovered as a separate product, whose proportion of oligomers to total sugars was 69.9% +/- 3.0%. To the best of our knowledge, this is the first report in which Salicornia fibers are shown to be a suitable feedstock for organosolv biomass fractionation. These results expand the portfolio of biomass sources for biorefinery applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy