SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Monasterio Gustavo) "

Sökning: WFRF:(Monasterio Gustavo)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Frede, Annika, et al. (författare)
  • B cell expansion hinders the stroma-epithelium regenerative cross talk during mucosal healing
  • 2022
  • Ingår i: Immunity. - : Elsevier BV. - 1074-7613 .- 1097-4180. ; 55:12, s. 2336-
  • Tidskriftsartikel (refereegranskat)abstract
    • Therapeutic promotion of intestinal regeneration holds great promise, but defining the cellular mechanisms that influence tissue regeneration remains an unmet challenge. To gain insight into the process of mucosal healing, we longitudinally examined the immune cell composition during intestinal damage and regeneration. B cells were the dominant cell type in the healing colon, and single-cell RNA sequencing (scRNA-seq) re-vealed expansion of an IFN-induced B cell subset during experimental mucosal healing that predominantly located in damaged areas and associated with colitis severity. B cell depletion accelerated recovery upon injury, decreased epithelial ulceration, and enhanced gene expression programs associated with tissue re-modeling. scRNA-seq from the epithelial and stromal compartments combined with spatial transcriptomics and multiplex immunostaining showed that B cells decreased interactions between stromal and epithelial cells during mucosal healing. Activated B cells disrupted the epithelial-stromal cross talk required for orga-noid survival. Thus, B cell expansion during injury impairs epithelial-stromal cell interactions required for mucosal healing, with implications for the treatment of IBD.
  •  
2.
  • Parigi, Sara M., et al. (författare)
  • The spatial transcriptomic landscape of the healing mouse intestine following damage
  • 2022
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The colon is comprised of specialized cells that interact with each other to function, however, the molecular regionalization of the colon is incompletely understood. Here, the authors use spatial transcriptomics to generate a publicly available resource defining the transcriptomic regionalization of the colon during steady state and mucosal healing. The intestinal barrier is composed of a complex cell network defining highly compartmentalized and specialized structures. Here, we use spatial transcriptomics to define how the transcriptomic landscape is spatially organized in the steady state and healing murine colon. At steady state conditions, we demonstrate a previously unappreciated molecular regionalization of the colon, which dramatically changes during mucosal healing. Here, we identified spatially-organized transcriptional programs defining compartmentalized mucosal healing, and regions with dominant wired pathways. Furthermore, we showed that decreased p53 activation defined areas with increased presence of proliferating epithelial stem cells. Finally, we mapped transcriptomics modules associated with human diseases demonstrating the translational potential of our dataset. Overall, we provide a publicly available resource defining principles of transcriptomic regionalization of the colon during mucosal healing and a framework to develop and progress further hypotheses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy