SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Monteiro Antónia) "

Sökning: WFRF:(Monteiro Antónia)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Labandeira, Conrad C., et al. (författare)
  • The evolutionary convergence of mid-mesozoic lacewings and cenozoic butterflies
  • 2016
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : Royal Society of London. - 0962-8452 .- 1471-2954. ; 283:1824
  • Tidskriftsartikel (refereegranskat)abstract
    • Mid-Mesozoic kalligrammatid lacewings (Neuroptera) entered the fossil record 165 million years ago (Ma) and disappeared 45 Ma later. Extant papilionoid butterflies (Lepidoptera) probably originated 80–70 Ma, long after kalligrammatids became extinct. Although poor preservation of kalligrammatid fossils previously prevented their detailed morphological and ecological characterization, we examine new, well-preserved, kalligrammatid fossils from Middle Jurassic and Early Cretaceous sites in northeastern China to unravel a surprising array of similar morphological and ecological features in these two, unrelated clades. We used polarized light and epifluorescence photography, SEM imaging, energy dispersive spectrometry and time-of-flight secondary ion mass spectrometry to examine kalligrammatid fossils and their environment. We mapped the evolution of specific traits onto a kalligrammatid phylogeny and discovered that these extinct lacewings convergently evolved wing eyespots that possibly contained melanin, and wing scales, elongate tubular proboscides, similar feeding styles, and seed–plant associations, similar to butterflies. Long-proboscid kalligrammatid lacewings lived in ecosystems with gymnosperm–insect relationships and likely accessed bennettitalean pollination drops and pollen. This system later was replaced by mid-Cretaceous angiosperms and their insect pollinators.
  •  
2.
  • Liang Qi Wee, Jocelyn, et al. (författare)
  • The genetic basis of wing spots in Pieris canidia butterflies
  • 2023
  • Ingår i: BMC Genomics. - 1471-2164. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Spots in pierid butterflies and eyespots in nymphalid butterflies are likely non-homologous wing colour pattern elements, yet they share a few features in common. Both develop black scales that depend on the function of the gene spalt, and both might have central signalling cells. This suggests that both pattern elements may be sharing common genetic circuitry. Hundreds of genes have already been associated with the development of nymphalid butterfly eyespot patterns, but the genetic basis of the simpler spot patterns on the wings of pierid butterflies has not been investigated. To facilitate studies of pierid wing patterns, we report a high-quality draft genome assembly for Pieris canidia, the Indian cabbage white. We then conducted transcriptomic analyses of pupal wing tissues sampled from the spot and non-spot regions of P. canidia at 3-6 h post-pupation. A total of 1352 genes were differentially regulated between wing tissues with and without the black spot, including spalt, Krüppel-like factor 10, genes from the Toll, Notch, TGF-β, and FGFR signalling pathways, and several genes involved in the melanin biosynthetic pathway. We identified 14 genes that are up-regulated in both pierid spots and nymphalid eyespots and propose that spots and eyespots share regulatory modules despite their likely independent origins.
  •  
3.
  • Nowell, Reuben W., et al. (författare)
  • A high-coverage draft genome of the mycalesine butterfly Bicyclus anynana
  • 2017
  • Ingår i: GigaScience. - : Oxford University Press (OUP). - 2047-217X. ; 6:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The mycalesine butterfly Bicyclus anynana, the Squinting bush brown, is a model organism in the study of lepidopteran ecology, development, and evolution. Here, we present a draft genome sequence for B. anynana to serve as a genomics resource for current and future studies of this important model species. Seven libraries with insert sizes ranging from 350 bp to 20 kb were constructed using DNA from an inbred female and sequenced using both Illumina and PacBio technology; 128 Gb of raw Illumina data was filtered to 124 Gb and assembled to a final size of 475 Mb (similar to x260 assembly coverage). Contigs were scaffolded using mate-pair, transcriptome, and PacBio data into 10 800 sequences with an N50 of 638 kb (longest scaffold 5 Mb). The genome is comprised of 26% repetitive elements and encodes a total of 22 642 predicted protein-coding genes. Recovery of a BUSCO set of core metazoan genes was almost complete (98%). Overall, these metrics compare well with other recently published lepidopteran genomes. We report a high-quality draft genome sequence for Bicyclus anynana. The genome assembly and annotated gene models are available at LepBase (http://ensembl.lepbase.org/index.html).
  •  
4.
  • Terenius, Olle, et al. (författare)
  • RNA interference in Lepidoptera : An overview of successful and unsuccessful studies and implications for experimental design
  • 2011
  • Ingår i: Journal of insect physiology. - : Elsevier BV. - 0022-1910 .- 1879-1611. ; 57:2, s. 231-245
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive experiments have not been collected in such a way that they are possible to analyze. In this review, we have collected detailed data from more than 150 experiments including all to date published and many unpublished experiments. Despite a large variation in the data, trends that are found are that RNAi is particularly successful in the family Saturniidae and in genes involved in immunity. On the contrary, gene expression in epidermal tissues seems to be most difficult to silence. In addition, gene silencing by feeding dsRNA requires high concentrations for success. Possible causes for the variability of success in RNAi experiments in Lepidoptera are discussed. The review also points to a need to further investigate the mechanism of RNAi in lepidopteran insects and its possible connection to the innate immune response. Our general understanding of RNAi in Lepidoptera will be further aided in the future as our public database at http://insectacentral.org/RNAi will continue to gather information on RNAi experiments.
  •  
5.
  • Woronik, Alyssa, 1990- (författare)
  • A functional genomic investigation of an alternative life history strategy : The Alba polymorphism in Colias croceus
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Life history traits affect the timing and pattern of maturation, reproduction, and survival during an organism’s lifecycle and are the major components influencing Darwinian fitness. Co-evolved patterns of these traits are known as life history strategies (LHS) and variation occurs between individuals, populations, and species. The polymorphisms underlying LHS are important targets of natural selection, yet the underlying genes and physiological mechanisms remain largely unknown. Mapping the genetic basis of a LHS and subsequently unraveling the associated physiological mechanisms is a challenging task, as complex phenotypes are often polygenic. However, in several systems discrete LHS are maintained within the population and are inherited as a single locus with pleiotropic effects. These systems provide a promising starting point for investigation into LHS mechanisms and this thesis focuses on one such strategy - the Alba polymorphism in Colias butterflies. Alba is inherited as a single autosomal locus, expressed only in females, and simultaneously affects development rate, reproductive potential, and wing color. Alba females are white, while the alternative morph is yellow/orange. About 28 of 90 species exhibit polymorphic females, though whether the Alba mechanism and associated tradeoffs are conserved across the genus remains to be determined. In this thesis I primarily focus on the species Colias croceus and integrate results from lipidomics, transcriptomics, microscopy, and genomics to gain insights to the proximate mechanisms underlying Alba and Alba’s evolution within the genus. Lipidomics confirm that, consistent with findings in New World species, C. croceus Alba females have larger abdominal lipid stores than orange, an advantage which is temperature dependent and arises primarily due to mobilized lipids. Gene expression data suggests differences in resource allocation, with Alba females investing in reproduction rather than wing color, consistent with previous findings in other Colias species. Additionally, I identify a morphological basis for Alba’s white wing color. Alba females from C. croceus, an Old World species, and Colias eurytheme, a New World species both exhibit a significant reduction in pigment granules, the structures within the wing scale that contain pigment. This is a trait that seems to be unique to Colias as other white Pierid butterflies have an abundance of pigment granules, similar to orange females. I also map the genetic basis of Alba to a single genomic region containing an Alba specific, Jockey-like transposable element insertion. Interestingly this transposable element​ is located downstream of BarH-1, a gene known to affect pigment granule formation in Drosophila. Finally, I construct a phylogeny using a global distribution of 20 Colias species to facilitate investigations of Alba’s evolution within the genus.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy