SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Montoro Alegria) "

Sökning: WFRF:(Montoro Alegria)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brzozowska, Beata, et al. (författare)
  • RENEB accident simulation exercise
  • 2017
  • Ingår i: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 93:1, s. 75-80
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The RENEB accident exercise was carried out in order to train the RENEB participants in coordinating and managing potentially large data sets that would be generated in case of a major radiological event. Materials and methods: Each participant was offered the possibility to activate the network by sending an alerting email about a simulated radiation emergency. The same participant had to collect, compile and report capacity, triage categorization and exposure scenario results obtained from all other participants. The exercise was performed over 27 weeks and involved the network consisting of 28 institutes: 21 RENEB members, four candidates and three non-RENEB partners. Results: The duration of a single exercise never exceeded 10 days, while the response from the assisting laboratories never came later than within half a day. During each week of the exercise, around 4500 samples were reported by all service laboratories (SL) to be examined and 54 scenarios were coherently estimated by all laboratories (the standard deviation from the mean of all SL answers for a given scenario category and a set of data was not larger than 3 patient codes). Conclusions: Each participant received training in both the role of a reference laboratory (activating the network) and of a service laboratory (responding to an activation request). The procedures in the case of radiological event were successfully established and tested.
  •  
2.
  • Endesfelder, David, et al. (författare)
  • RENEB/EURADOS field exercise 2019 : robust dose estimation under outdoor conditions based on the dicentric chromosome assay
  • 2021
  • Ingår i: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 97:9, s. 1181-1198
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Biological and/or physical assays for retrospective dosimetry are valuable tools to recover the exposure situation and to aid medical decision making. To further validate and improve such biological and physical assays, in 2019, EURADOS Working Group 10 and RENEB performed a field exercise in Lund, Sweden, to simulate various real-life exposure scenarios.Materials and methods: For the dicentric chromosome assay (DCA), blood tubes were located at anthropomorphic phantoms positioned in different geometries and were irradiated with a 1.36 TBq 192Ir-source. For each exposure condition, dose estimates were provided by at least one laboratory and for four conditions by 17 participating RENEB laboratories. Three radio-photoluminescence glass dosimeters were placed at each tube to assess reference doses.Results: The DCA results were homogeneous between participants and matched well with the reference doses (≥95% of estimates within ±0.5 Gy of the reference). For samples close to the source systematic underestimation could be corrected by accounting for exposure time. Heterogeneity within and between tubes was detected for reference doses as well as for DCA doses estimates.Conclusions: The participants were able to successfully estimate the doses and to provide important information on the exposure scenarios under conditions closely resembling a real-life situation.
  •  
3.
  • Gregoire, Eric, et al. (författare)
  • RENEB Inter-Laboratory comparison 2017 : limits and pitfalls of ILCs
  • 2021
  • Ingår i: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 97:7, s. 888-905
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: In case of a mass-casualty radiological event, there would be a need for networking to overcome surge limitations and to quickly obtain homogeneous results (reported aberration frequencies or estimated doses) among biodosimetry laboratories. These results must be consistent within such network. Inter-laboratory comparisons (ILCs) are widely accepted to achieve this homogeneity. At the European level, a great effort has been made to harmonize biological dosimetry laboratories, notably during the MULTIBIODOSE and RENEB projects. In order to continue the harmonization efforts, the RENEB consortium launched this intercomparison which is larger than the RENEB network, as it involves 38 laboratories from 21 countries. In this ILC all steps of the process were monitored, from blood shipment to dose estimation. This exercise also aimed to evaluate the statistical tools used to compare laboratory performance.Materials and methods: Blood samples were irradiated at three different doses, 1.8, 0.4 and 0 Gy (samples A, C and B) with 4-MV X-rays at 0.5 Gy min−1, and sent to the participant laboratories. Each laboratory was requested to blindly analyze 500 cells per sample and to report the observed frequency of dicentric chromosomes per metaphase and the corresponding estimated dose.Results: This ILC demonstrates that blood samples can be successfully distributed among laboratories worldwide to perform biological dosimetry in case of a mass casualty event. Having achieved a substantial harmonization in multiple areas among the RENEB laboratories issues were identified with the available statistical tools, which are not capable to advantageously exploit the richness of results of a large ILCs. Even though Z- and U-tests are accepted methods for biodosimetry ILCs, setting the number of analyzed metaphases to 500 and establishing a tests’ common threshold for all studied doses is inappropriate for evaluating laboratory performance. Another problem highlighted by this ILC is the issue of the dose-effect curve diversity. It clearly appears that, despite the initial advantage of including the scoring specificities of each laboratory, the lack of defined criteria for assessing the robustness of each laboratory’s curve is a disadvantage for the ‘one curve per laboratory’ model.Conclusions: Based on our study, it seems relevant to develop tools better adapted to the collection and processing of results produced by the participant laboratories. We are confident that, after an initial harmonization phase reached by the RENEB laboratories, a new step toward a better optimization of the laboratory networks in biological dosimetry and associated ILC is on the way.
  •  
4.
  • Kulka, Ulrike, et al. (författare)
  • RENEB - Running the European Network of biological dosimetry and physical retrospective dosimetry
  • 2017
  • Ingår i: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 93:1, s. 2-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: A European network was initiated in 2012 by 23 partners from 16 European countries with the aim to significantly increase individualized dose reconstruction in case of large-scale radiological emergency scenarios. Results: The network was built on three complementary pillars: (1) an operational basis with seven biological and physical dosimetric assays in ready-to-use mode, (2) a basis for education, training and quality assurance, and (3) a basis for further network development regarding new techniques and members. Techniques for individual dose estimation based on biological samples and/or inert personalized devices as mobile phones or smart phones were optimized to support rapid categorization of many potential victims according to the received dose to the blood or personal devices. Communication and cross-border collaboration were also standardized. To assure long-term sustainability of the network, cooperation with national and international emergency preparedness organizations was initiated and links to radiation protection and research platforms have been developed. A legal framework, based on a Memorandum of Understanding, was established and signed by 27 organizations by the end of 2015. Conclusions: RENEB is a European Network of biological and physical-retrospective dosimetry, with the capacity and capability to perform large-scale rapid individualized dose estimation. Specialized to handle large numbers of samples, RENEB is able to contribute to radiological emergency preparedness and wider large-scale research projects.
  •  
5.
  • Oestreicher, Ursula, et al. (författare)
  • RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA)
  • 2017
  • Ingår i: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 93:1, s. 20-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Two quality controlled inter-laboratory exercises were organized within the EU project 'Realizing the European Network of Biodosimetry (RENEB)' to further optimize the dicentric chromosome assay (DCA) and to identify needs for training and harmonization activities within the RENEB network. Materials and methods: The general study design included blood shipment, sample processing, analysis of chromosome aberrations and radiation dose assessment. After manual scoring of dicentric chromosomes in different cell numbers dose estimations and corresponding 95% confidence intervals were submitted by the participants. Results: The shipment of blood samples to the partners in the European Community (EU) were performed successfully. Outside the EU unacceptable delays occurred. The results of the dose estimation demonstrate a very successful classification of the blood samples in medically relevant groups. In comparison to the 1st exercise the 2nd intercomparison showed an improvement in the accuracy of dose estimations especially for the high dose point. Conclusions: In case of a large-scale radiological incident, the pooling of ressources by networks can enhance the rapid classification of individuals in medically relevant treatment groups based on the DCA. The performance of the RENEB network as a whole has clearly benefited from harmonization processes and specific training activities for the network partners.
  •  
6.
  • Romm, Horst, et al. (författare)
  • Web based scoring is useful for validation and harmonisation of scoring criteria within RENEB
  • 2017
  • Ingår i: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 93:1, s. 110-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To establish a training data set of digital images and to investigate the scoring criteria and dose assessment of the dicentric assay within the European network of biodosimetry (RENEB), a web based scoring inter-comparison was undertaken by 17 RENEB partners. Materials and methods: Two sets of 50 high resolution images were uploaded onto the RENEB web site. One set included metaphases after a moderate exposure (1.3 Gy) and the other set consisted of metaphases after a high dose exposure (3.5 Gy). The laboratories used their own calibration curves for estimating doses based on observed aberration frequencies. Results: The dose estimations and 95% confidence limits were compared to the actual doses and the corresponding z-values were satisfactory for the majority; only the dose estimations from two laboratories were too low or too high. The coefficients of variation were 17.6% for the moderate and 11.2% for the high dose. Metaphases with controversial results could be identified for training purposes. Conclusions: Overall, the web based scoring of the two galleries by the 17 laboratories produced very good results. Application of web based scoring for the dicentric assay may therefore be a relevant strategy for an operational biodosimetry assistance network.
  •  
7.
  • Terzoudi, Georgia I., et al. (författare)
  • Dose assessment intercomparisons within the RENEB network using G(0)-lymphocyte prematurely condensed chromosomes (PCC assay)
  • 2017
  • Ingår i: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 93:1, s. 48-57
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Dose assessment intercomparisons within the RENEB network were performed for triage biodosimetry analyzing G(0)-lymphocyte PCC for harmonization, standardization and optimization of the PCC assay. Materials and methods: Comparative analysis among different partners for dose assessment included shipment of PCC-slides and captured images to construct dose-response curves for up to 6 Gy gamma-rays. Accident simulation exercises were performed to assess the suitability of the PCC assay by detecting speed of analysis and minimum number of cells required for categorization of potentially exposed individuals. Results: Calibration data based on Giemsa-stained fragments in excess of 46 PCC were obtained by different partners using galleries of PCC images for each dose-point. Mean values derived from all scores yielded a linear dose-response with approximately 4 excess-fragments/cell/Gy. To unify scoring criteria, exercises were carried out using coded PCC-slides and/or coded irradiated blood samples. Analysis of samples received 24h post-exposure was successfully performed using Giemsa staining (1 excess-fragment/cell/Gy) or centromere/telomere FISH-staining for dicentrics. Conclusions: Dose assessments by RENEB partners using appropriate calibration curves were mostly in good agreement. The PCC assay is quick and reliable for whole- or partial-body triage biodosimetry by scoring excess-fragments or dicentrics in G(0)-lymphocytes. Particularly, analysis of Giemsa-stained excess PCC-fragments is simple, inexpensive and its automation could increase throughput and scoring objectivity of the PCC assay.
  •  
8.
  • Trompier, Francois, et al. (författare)
  • Investigation of the influence of calibration practices on cytogenetic laboratory performance for dose estimation
  • 2017
  • Ingår i: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 93:1, s. 118-126
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: In the frame of the QA program of RENEB, an inter-laboratory comparison (ILC) of calibration sources used in biological dosimetry was achieved to investigate the influence of calibration practices and protocols on the results of the dose estimation performance as a first step to harmonization and standardization of dosimetry and irradiation practices in the European biological dosimetry network. Materials and methods: Delivered doses by irradiation facilities used by RENEB partners were determined with EPR/alanine dosimetry system. Dosimeters were irradiated in the same conditions as blood samples. A short survey was also performed to collect the information needed for the data analysis and evaluate the diversity of practices. Results: For most of partners the deviation of delivered dose from the targeted dose remains below 10%. Deviations larger than 10% were observed for five facilities out of 21. Origins of the largest discrepancies were identified. Correction actions were evaluated as satisfactory. The re-evaluation of some ILC results for the fluorescence in situ hybridization (FISH) and premature chromosome condensation (PCC) assays has been performed leading to an improvement of the overall performances. Conclusions: This work has shown the importance of dosimetry in radiobiology studies and the needs of harmonization, standardization in irradiation and dosimetry practices and educational training for biologists using ionizing radiation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy