SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Montoro Girona Miguel) "

Sökning: WFRF:(Montoro Girona Miguel)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grosbois, Guillaume, et al. (författare)
  • Land and Freshwater Complex Interactions in Boreal Forests: A Neglected Topic in Forest Management
  • 2023
  • Ingår i: Boreal Forests in the Face of Climate Change. - Cham : Springer International Publishing. - 9783031159879 - 9783031159886 - 9783031159909 ; 74, s. 719-745
  • Bokkapitel (refereegranskat)abstract
    • Aquatic and terrestrial habitats are interdependent components of the boreal forest landscape involving multiple dynamic interactions; these are manifested particularly in riparian areas, which are key components in the forest landscape. However, this interdependence between aquatic and terrestrial habitats is not adequately accounted for in the current management of forest ecosystems. Here we review the impacts of land disturbances on the optical and physicochemical properties of water bodies, aquatic food web health, and the ecological functioning of these freshwaters. We also describe how freshwaters influence the adjacent terrestrial ecosystems. A better understanding of these dynamic biotic and abiotic interactions between land and freshwater of the boreal forest is a first step toward including these freshwaters in the sustainable management of the boreal forest.
  •  
2.
  •  
3.
  • Löf, Magnus, et al. (författare)
  • Silviculture of Mixed-Species and Structurally Complex Boreal Stands
  • 2023
  • Ingår i: Boreal Forests in the Face of Climate Change : Sustainable Management. - Cham : Springer International Publishing. - 9783031159879 ; 74:74, s. 403-416
  • Bokkapitel (refereegranskat)abstract
    • Understanding structurally complex boreal stands is crucial for designing ecosystem management strategies that promote forest resilience under global change. However, current management practices lead to the homogenization and simplification of forest structures in the boreal biome. In this chapter, we illustrate two options for managing productive and resilient forests: (1) the managing of two-aged mixed-species forests; and (2) the managing of multi-aged, structurally complex stands. Results demonstrate that multi-aged and mixed stand management are powerful silvicultural tools to promote the resilience of boreal forests under global change.
  •  
4.
  • Montoro Girona, Miguel (författare)
  • A Secret Hidden in the Sediments: Lepidoptera Scales
  • 2018
  • Ingår i: Frontiers in Ecology and Evolution. - : Frontiers Media SA. - 2296-701X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural disturbance is one of the major topics in forest ecology. However, most paleoecological studies have only considered the influence of wildfire as an agent of disturbance, with fire history based primarily on the use of charcoal as a proxy for fire events. The frequency and intensity of insect outbreaks and their effect on the forest landscape have been neglected due to the absence of an effective proxy tool. Finding indicators able to provide insight into the impacts of past insect outbreaks is therefore essential. Fossil moth (Lepidoptera) scales offer a new approach for interpreting past insect-related disturbances and assessing the interactions between climate, fire and insect outbreaks. Paleoindicators must respond to three main criteria: (1) be in high abundance, (2) allow for easy identification and (3) remain well-preserved in sediment records. We demonstrate that wing scales are abundant in the boreal forest during insect outbreak periods. We also show that due to their chitin composition, these scales remain well-preserved throughout a 10,000-year sediment record. Furthermore, they are relatively easy to identify after being recovered from lake sediments. Therefore, we introduce the needs, potential and applications of this paleoindicator in forest ecology, and the main directions for the future research. This new approach offers an important scientific advance in ecology through a much improved, higher resolution reconstruction of an important natural disturbance: insect outbreaks.
  •  
5.
  • Montoro Girona, Miguel (författare)
  • Autoregressive models for time series of random sums of positive variables: Application to tree growth as a function of climate and insect outbreak
  • 2022
  • Ingår i: Ecological Modelling. - : Elsevier BV. - 0304-3800 .- 1872-7026. ; 471
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a broad class of semi-parametric models for time series of random sums of positive variables. Our methodology allows the number of terms inside the sum to be time-varying and is therefore well suited to many examples encountered in the natural sciences. We study the stability properties of the models and provide a valid statistical inference procedure to estimate the model parameters. It is shown that the proposed quasi-maximum likelihood estimator is consistent and asymptotically Gaussian distributed. This work is complemented by simulation results and applied to time series representing growth rates of white spruce (Picea glauca) trees from a few dozen sites in Quebec (Canada). This time series spans 41 years, including one major spruce budworm (Choristoneura fumiferana) outbreak between 1968 and 1991. We found significant growth reductions related to budworm-induced defoliation up to two years post-outbreak. Our results also revealed the positive effects of maximum summer temperature, precipitation, and the climate moisture index on white spruce growth. We also identified the negative effects of the climate moisture index in the spring and the maximum temperature of the previous summer. However, the model's performance on this data set was not improved when the interactions between climate and defoliation on growth were considered. This study represents a major advance in our understanding of budworm-climate-tree interactions and provides a useful tool to project the combined effects of climate and insect defoliation on tree growth in a context of greater frequency and severity of outbreaks coupled with the anticipated increases in temperature.
  •  
6.
  • Montoro Girona, Miguel (författare)
  • Building a Framework for Adaptive Silviculture Under Global Change
  • 2023
  • Ingår i: Boreal Forests in the Face of Climate Change : Sustainable Management. - Cham : Springer International Publishing. - 9783031159879 ; :74, s. 359-381
  • Bokkapitel (refereegranskat)abstract
    • Uncertainty surrounding global change impacts on future forest conditions has motivated the development of silviculture strategies and frameworks focused on enhancing potential adaptation to changing climate and disturbance regimes. This includes applying current silvicultural practices, such as thinning and mixed-species and multicohort systems, and novel experimental approaches, including the deployment of future-adapted species and genotypes, to make forests more resilient to future changes. In this chapter, we summarize the general paradigms and approaches associated with adaptation silviculture along a gradient of strategies ranging from resistance to transition. We describe how these concepts have been operationalized and present potential landscape-scale frameworks for allocating different adaptation intensities as part of functionally complex networks in the face of climate change.
  •  
7.
  • Montoro Girona, Miguel, et al. (författare)
  • Challenges for the Sustainable Management of the Boreal Forest Under Climate Change
  • 2023
  • Ingår i: Boreal Forests in the Face of Climate Change : Sustainable Management. - Cham : Springer International Publishing. - 9783031159879 ; :74, s. 773–837-
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • The increasing effects of climate and global change oblige ecosystem-based management to adapt forestry practices to deal with uncertainties. Here we provide an overview to identify the challenges facing the boreal forest under projected future change, including altered natural disturbance regimes, biodiversity loss, increased forest fragmentation, the rapid loss of old-growth forests, and the need to develop novel silvicultural approaches. We specifically address subjects previously lacking from the ecosystem-based management framework, e.g., Indigenous communities, social concerns, ecological restoration, and impacts on aquatic ecosystems. We conclude by providing recommendations for ensuring the successful long-term management of the boreal biome facing climate change.
  •  
8.
  • Montoro Girona, Miguel (författare)
  • Changes in Spatiotemporal Patterns of 20th Century Spruce Budworm Outbreaks in Eastern Canadian Boreal Forests
  • 2018
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • In scenarios of future climate change, there is a projectedincrease in the occurrence and severity of natural disturbances inboreal forests. Spruce budworm (Choristoneura fumiferana)(SBW) is the main defoliator of conifer trees in the North American boreal forests affecting large areas and causing marked losses of timber supplies. However, the impact and the spatiotemporal patterns of SBW dynamics at the landscape scale over the last century remain poorly known. This is particularly true for northern regions dominated by spruce species. The main goal of this study is to reconstruct SBW outbreaks during the 20th century at the landscape scale and to evaluate changes in the associated spatiotemporal patterns in terms of distribution area, frequency, and severity. We rely on a dendroecological approach from sites within the eastern Canadian boreal forest and draw from a large dataset of almost 4,000 trees across a study area of nearly 800,000 km(2). Interpolation and analyses of hotspots determined reductions in tree growth related to insect outbreak periods and identified the spatiotemporal patterns of SBW activity over the last century. The use of an Ordinary Least Squares model including regional temperature and precipitation anomalies allows us to assess the impact of climate variables on growth reductions and to compensate for the lack of non-host trees in northern regions. We identified three insect outbreaks having different spatiotemporal patterns, duration, and severity. The first (1905-1930) affected up to 40% of the studied trees, initially synchronizing from local infestations and then migrating to northern stands. The second outbreak (1935-1965) was the longest and the least severe with only up to 30% of trees affected by SBW activity. The third event (1968-1988) was the shortest, yet it was also the most severe and extensive, affecting nearly up to 50% of trees and 70% of the study area. This most recent event was identified for the first time at the limit of the commercial forest illustrating a northward shift of the SBW distribution area during the 20th century. Overall, this research confirms that insect outbreaks are a complex and dynamic ecological phenomena, which makes the understanding of natural disturbance cycles at multiple scales a major priority especially in the context of future regional climate change.
  •  
9.
  • Montoro Girona, Miguel (författare)
  • Conifer Regeneration After Experimental Shelterwood and Seed-Tree Treatments in Boreal Forests: Finding Silvicultural Alternatives
  • 2018
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Forest regeneration is a key element in achieving sustainable forest management. Partial harvest methods have been used extensively in temperate broadleaf and mixedwood ecosystems to promote regeneration on poorly stocked sites and to maintain forest composition and productivity. However, their effectiveness in promoting conifer establishment has yet to be demonstrated in unmanaged boreal forests, especially those dominated by black spruce (Picea mariana (Mill.) BSP) where constraints for regeneration differ from those found in more meridional regions. We aimed to evaluate conifer seedling density and dimensions, 10 years after the onset of a gradient of silvicultural treatments varying in harvesting intensities, and to identify the critical factors driving the regeneration process. Study blocks of even-aged black spruce stands in the eastern Canadian boreal forest were submitted to three variants of shelterwood harvesting: a seed-tree harvest, a clear-cut and an untreated control. Shelterwood and seed-tree harvesting were combined with spot scarification to promote regeneration. Shelterwood and seed-tree harvesting produced a density of conifer regeneration sufficient to maintain forest productivity, but they did not promote seedling growth. Black spruce was the predominant species in terms of regeneration density, with proportions 3-5x higher than that for balsam fir (Abies balsamea (L.) Mill.). Ten years after treatment, seed-origin black spruce seedlings were abundant in skidding trails, while layers dominated the residual strips. Balsam fir density was not influenced by treatment nor by tree position relative to skidding trails. Balsam fir and black spruce had different responses to treatment in terms of height and diameter, the former exhibiting a better growth performance and larger diameter in the residual strips. Spot scarification createdmicro-sites that had a significant impact on the regeneration process. Overall, our results support that shelterwood and seed-tree harvesting combined with scarification enable adequate regeneration in black spruce stands, confirming these treatments as viable silvicultural alternatives to clear-cutting when required by sustainable forest management objectives.
  •  
10.
  • Montoro Girona, Miguel, et al. (författare)
  • Does the type of silvicultural practice influence spruce budworm defoliation of seedlings?
  • 2021
  • Ingår i: Ecosphere. - : Wiley. - 2150-8925. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Spruce budworm (Choristoneura fumiferana (Clem)) is the main defoliator in the boreal forest of North America, and its outbreaks have major ecological and economic consequences and represent a challenge for forest management. Numerous studies have addressed the effects of this defoliator on mature trees, whereas the effects of spruce budworm on regeneration remain elusive. Furthermore, intensive exploitation practices during the last decades have left a large area of the Canadian boreal forest in an early development stage. In this context, it becomes vital to understand those factors affecting the severity of spruce budworm-related defoliation on regeneration. Here, we determine the defoliation severity of black spruce and balsam fir seedlings in both mature pure black spruce and black spruce-balsam fir stands subjected to two different silvicultural treatments (clear-cutting and partial cutting). Defoliation intensity varied between stand types, silvicultural treatments, species, and height classes. Seedlings in black spruce-balsam fir stands experienced twice the defoliation of those in pure black spruce stands (black spruce seedlings 10% vs. 23%; balsam fir seedlings 29% vs. 47%, respectively). Harvesting methods also influenced seedling defoliation. Under clear-cutting, black spruce seedlings (24%) were three times as defoliated as black spruce seedlings in partial cutting stands (8%), whereas balsam fir seedlings in clear-cutting plots experienced twice the defoliation (42%) of balsam fir seedlings in partial cutting plots (20%). The level of defoliation also increased with seedling height. This study will help silvicultural strategies adapt to the effects of natural disturbance regimes. As the intensity and severity of defoliator outbreaks are expected to increase under climate change, these results will help guide forest management strategies to select harvesting methods that will limit the effects of defoliation on conifer regeneration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy