SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moora Mari) "

Sökning: WFRF:(Moora Mari)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gotzenberger, Lars, et al. (författare)
  • Ecological assembly rules in plant communities-approaches, patterns and prospects
  • 2012
  • Ingår i: Biological Reviews. - 1464-7931 .- 1469-185X. ; 87:1, s. 111-127
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding how communities of living organisms assemble has been a central question in ecology since the early days of the discipline. Disentangling the different processes involved in community assembly is not only interesting in itself but also crucial for an understanding of how communities will behave under future environmental scenarios. The traditional concept of assembly rules reflects the notion that species do not co-occur randomly but are restricted in their co-occurrence by interspecific competition. This concept can be redefined in a more general framework where the co-occurrence of species is a product of chance, historical patterns of speciation and migration, dispersal, abiotic environmental factors, and biotic interactions, with none of these processes being mutually exclusive. Here we present a survey and meta-analyses of 59 papers that compare observed patterns in plant communities with null models simulating random patterns of species assembly. According to the type of data under study and the different methods that are applied to detect community assembly, we distinguish four main types of approach in the published literature: species co-occurrence, niche limitation, guild proportionality and limiting similarity. Results from our meta-analyses suggest that non-random co-occurrence of plant species is not a widespread phenomenon. However, whether this finding reflects the individualistic nature of plant communities or is caused by methodological shortcomings associated with the studies considered cannot be discerned from the available metadata. We advocate that more thorough surveys be conducted using a set of standardized methods to test for the existence of assembly rules in data sets spanning larger biological and geographical scales than have been considered until now. We underpin this general advice with guidelines that should be considered in future assembly rules research. This will enable us to draw more accurate and general conclusions about the non-random aspect of assembly in plant communities.
  •  
2.
  • Harrison, Paula A., et al. (författare)
  • Identifying and prioritising services in European terrestrial and freshwater ecosystems
  • 2010
  • Ingår i: Biodiversity and Conservation. - : Springer Science and Business Media LLC. - 0960-3115 .- 1572-9710. ; 19:10, s. 2791-2821
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecosystems are multifunctional and provide humanity with a broad array of vital services. Effective management of services requires an improved evidence base, identifying the role of ecosystems in delivering multiple services, which can assist policy-makers in maintaining them. Here, information from the literature and scientific experts was used to systematically document the importance of services and identify trends in their use and status over time for the main terrestrial and freshwater ecosystems in Europe. The results from this review show that intensively managed ecosystems contribute mostly to vital provisioning services (e.g. agro-ecosystems provide food via crops and livestock, and forests provide wood), while semi-natural ecosystems (e.g. grasslands and mountains) are key contributors of genetic resources and cultural services (e.g. aesthetic values and sense of place). The most recent European trends in human use of services show increases in demand for crops from agro-ecosystems, timber from forests, water flow regulation from rivers, wetlands and mountains, and recreation and ecotourism in most ecosystems, but decreases in livestock production, freshwater capture fisheries, wild foods and virtually all services associated with ecosystems which have considerably decreased in area (e.g. semi-natural grasslands). The condition of the majority of services show either a degraded or mixed status across Europe with the exception of recent enhancements in timber production in forests and mountains, freshwater provision, water/erosion/natural hazard regulation and recreation/ecotourism in mountains, and climate regulation in forests. Key gaps in knowledge were evident for certain services across all ecosystems, including the provision of biochemicals and natural medicines, genetic resources and the regulating services of seed dispersal, pest/disease regulation and invasion resistance.
  •  
3.
  • Hicks, Lettice C., et al. (författare)
  • Toward a function-first framework to make soil microbial ecology predictive
  • 2022
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 103:e03594
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil microbial communities perform vital ecosystem functions, such as the decomposition of organic matter to provide plant nutrition. However, despite the functional importance of soil microorganisms, attribution of ecosystem function to particular constituents of the microbial community has been impeded by a lack of information linking microbial function to community composition and structure. Here, we propose a function-first framework to predict how microbial communities influence ecosystem functions. We first view the microbial community associated with a specific function as a whole and describe the dependence of microbial functions on environmental factors (e.g., the intrinsic temperature dependence of bacterial growth rates). This step defines the aggregate functional response curve of the community. Second, the contribution of the whole community to ecosystem function can be predicted, by combining the functional response curve with current environmental conditions. Functional response curves can then be linked with taxonomic data in order to identify sets of “biomarker” taxa that signal how microbial communities regulate ecosystem functions. Ultimately, such indicator taxa may be used as a diagnostic tool, enabling predictions of ecosystem function from community composition. In this paper, we provide three examples to illustrate the proposed framework, whereby the dependence of bacterial growth on environmental factors, including temperature, pH, and salinity, is defined as the functional response curve used to interlink soil bacterial community structure and function. Applying this framework will make it possible to predict ecosystem functions directly from microbial community composition.
  •  
4.
  • Lenoir, Jonathan, et al. (författare)
  • Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe
  • 2013
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 19:5, s. 1470-1481
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies from mountainous areas of small spatial extent (<2500km2) suggest that fine-grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate-change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000-m2 units (community-inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1-km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1-km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100-km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 4672% of variation in LmT and 9296% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km2 units peaked at 6065 degrees N and increased with terrain roughness, averaging 1.97 degrees C (SD=0.84 degrees C) and 2.68 degrees C (SD=1.26 degrees C) within the flattest and roughest units respectively. Complex interactions between topography-related variables and latitude explained 35% of variation in growing-season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing-season CiT within 100-km2 units was, on average, 1.8 times greater (0.32 degrees Ckm1) than spatial turnover in growing-season GiT (0.18 degrees Ckm1). We conclude that thermal variability within 1-km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.
  •  
5.
  • Mikryukov, Vladimir, et al. (författare)
  • Connecting the multiple dimensions of global soil fungal diversity
  • 2023
  • Ingår i: Science advances. - 2375-2548. ; 9:48
  • Tidskriftsartikel (refereegranskat)abstract
    • How the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on local fungal species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). We integrate fungi into the principles of global biodiversity distribution and present detailed maps for biodiversity conservation and modeling of global ecological processes.
  •  
6.
  • Moora, Mari, et al. (författare)
  • AM fungal communities inhabiting the roots of submerged aquatic plant Lobelia dortmanna are diverse and include a high proportion of novel taxa
  • 2016
  • Ingår i: Mycorrhiza. - : Springer Science and Business Media LLC. - 0940-6360 .- 1432-1890. ; 26:7, s. 735-745
  • Tidskriftsartikel (refereegranskat)abstract
    • While the arbuscular mycorrhizal (AM) symbiosis is known to be widespread in terrestrial ecosystems, there is growing evidence that aquatic plants also form the symbiosis. It has been suggested that symbiosis with AM fungi may represent an important adaptation for isoA << tid plants growing on nutrient-poor sediments in oligotrophic lakes. In this study, we address AM fungal root colonization intensity, richness and community composition (based on small subunit (SSU) ribosomal RNA (rRNA) gene sequencing) in five populations of the isoA << tid plant species Lobelia dortmanna inhabiting oligotrophic lakes in Southern Sweden. We found that the roots of L. dortmanna hosted rich AM fungal communities and about 15 % of the detected molecular taxa were previously unrecorded. AM fungal root colonization intensity and taxon richness varied along an environmental gradient, being higher in oligotrophic and lower in mesotrophic lakes. The overall phylogenetic structure of this aquatic fungal community differed from that described in terrestrial systems: The roots of L. dortmanna hosted more Archaeosporaceae and fewer Glomeraceae taxa than would be expected based on global data from terrestrial AM fungal communities.
  •  
7.
  • Partel, Meelis, et al. (författare)
  • Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi
  • 2017
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 216:1, s. 227-238
  • Tidskriftsartikel (refereegranskat)abstract
    • The availability of global microbial diversity data, collected using standardized metabarcoding techniques, makes microorganisms promising models for investigating the role of regional and local factors in driving biodiversity. Here we modelled the global diversity of symbiotic arbuscular mycorrhizal (AM) fungi using currently available data on AM fungal molecular diversity (small subunit (SSU) ribosomal RNA (rRNA) gene sequences) in field samples. To differentiate between regional and local effects, we estimated species pools (sets of potentially suitable taxa) for each site, which are expected to reflect regional processes. We then calculated community completeness, an index showing the fraction of the species pool present, which is expected to reflect local processes. We found significant spatial variation, globally in species pool size, as well as in local and dark diversity (absent members of the species pool). Species pool size was larger close to areas containing tropical grasslands during the last glacial maximum, which are possible centres of diversification. Community completeness was greater in regions of high wilderness (remoteness from human disturbance). Local diversity was correlated with wilderness and current connectivity to mountain grasslands. Applying the species pool concept to symbiotic fungi facilitated a better understanding of how biodiversity can be jointly shaped by large-scale historical processes and recent human disturbance.
  •  
8.
  • Pölme, Sergei, et al. (författare)
  • Host preference and network properties in biotrophic plant-fungal associations
  • 2018
  • Ingår i: New Phytologist. - : WILEY. - 0028-646X .- 1469-8137. ; 217:3, s. 1230-1239
  • Tidskriftsartikel (refereegranskat)abstract
    • Analytical methods can offer insights into the structure of biological networks, but mechanisms that determine the structure of these networks remain unclear. We conducted a synthesis based on 111 previously published datasets to assess a range of ecological and evolutionary mechanisms that may influence the plant-associated fungal interaction networks. We calculated the relative host effect on fungal community composition and compared nestedness and modularity among different mycorrhizal types and endophytic fungal guilds. We also assessed how plant-fungal network structure was related to host phylogeny, environmental and sampling properties. Orchid mycorrhizal fungal communities responded most strongly to host identity, but the effect of host was similar among all other fungal guilds. Community nestedness, which did not differ among fungal guilds, declined significantly with increasing mean annual precipitation on a global scale. Orchid and ericoid mycorrhizal fungal communities were more modular than ectomycorrhizal and root endophytic communities, with arbuscular mycorrhizal fungi in an intermediate position. Network properties among a broad suite of plant-associated fungi were largely comparable and generally unrelated to phylogenetic distance among hosts. Instead, network metrics were predominantly affected by sampling and matrix properties, indicating the importance of study design in properly inferring ecological patterns.
  •  
9.
  • Schweiger, Oliver, et al. (författare)
  • Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination
  • 2010
  • Ingår i: Biological Reviews. - 1469-185X .- 1464-7931. ; 85:4, s. 777-795
  • Forskningsöversikt (refereegranskat)abstract
    • Global change may substantially affect biodiversity and ecosystem functioning but little is known about its effects on essential biotic interactions. Since different environmental drivers rarely act in isolation it is important to consider interactive effects. Here, we focus on how two key drivers of anthropogenic environmental change, climate change and the introduction of alien species, affect plant-pollinator interactions. Based on a literature survey we identify climatically sensitive aspects of species interactions, assess potential effects of climate change on these mechanisms, and derive hypotheses that may form the basis of future research. We find that both climate change and alien species will ultimately lead to the creation of novel communities. In these communities certain interactions may no longer occur while there will also be potential for the emergence of new relationships. Alien species can both partly compensate for the often negative effects of climate change but also amplify them in some cases. Since potential positive effects are often restricted to generalist interactions among species, climate change and alien species in combination can result in significant threats to more specialist interactions involving native species.
  •  
10.
  • Tedersoo, Leho, et al. (författare)
  • Global patterns in endemicity and vulnerability of soil fungi.
  • 2022
  • Ingår i: Global change biology. - : Wiley. - 1365-2486 .- 1354-1013. ; 28:22, s. 6696-6710
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (10)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (12)
Författare/redaktör
Zobel, Martin (10)
Bahram, Mohammad (3)
Tedersoo, Leho (3)
Sykes, Martin (3)
Settele, Josef (3)
Kohout, Petr (3)
visa fler...
Öpik, Maarja (3)
Bråthen, Kari Anne (3)
de Bello, Francesco (3)
Hylander, Kristoffer (2)
Luoto, Miska (2)
Agan, Ahto (2)
Kurina, Olavi (2)
Põldmaa, Kadri (2)
Põlme, Sergei (2)
Mikryukov, Vladimir (2)
Roslin, Tomas (2)
Brunet, Jörg (2)
Diekmann, Martin (2)
Graae, Bente Jessen (2)
Hickler, Thomas (2)
Armbruster, W. Scott (2)
Lenoir, Jonathan (2)
Alsos, Inger Greve (2)
Vandvik, Vigdis (2)
Dynesius, Mats (2)
Klanderud, Kari (2)
Anslan, Sten (2)
Zizka, Alexander (2)
Dai, Dong Qin (2)
Bruun, Hans Henrik (2)
Decocq, Guillaume (2)
Ejrnæs, Rasmus (2)
Delgado-Baquerizo, M ... (2)
Walther, Gian-Reto (2)
Netherway, Tarquin (2)
Brathen, Kari Anne (2)
Milbau, Ann (2)
Bauters, Marijn (2)
Birks, H. John B. (2)
Grytnes, John-Arvid (2)
Virtanen, Risto (2)
Hulme, Philip E. (2)
Verbeken, Annemieke (2)
Heilmann-Clausen, Ja ... (2)
Svenning, Jens-Chris ... (2)
Vila, Montserrat (2)
Guisan, Antoine (2)
Marín, César (2)
Partel, Meelis (2)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (6)
Stockholms universitet (4)
Lunds universitet (4)
Göteborgs universitet (2)
Umeå universitet (2)
Uppsala universitet (2)
visa fler...
Karlstads universitet (1)
visa färre...
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (12)
Lantbruksvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy