SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Morales Edgar Abarca) "

Sökning: WFRF:(Morales Edgar Abarca)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ghamgosar, Pedram, 1979-, et al. (författare)
  • Self-Powered Photodetectors Based on Core-Shell ZnO-Co3O4 Nanowire Heterojunctions
  • 2019
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 11:26, s. 23454-23462
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-powered photodetectors operating in the UV–visible–NIR window made of environmentally friendly, earth abundant, and cheap materials are appealing systems to exploit natural solar radiation without external power sources. In this study, we propose a new p–n junction nanostructure, based on a ZnO–Co3O4 core–shell nanowire (NW) system, with a suitable electronic band structure and improved light absorption, charge transport, and charge collection, to build an efficient UV–visible–NIR p–n heterojunction photodetector. Ultrathin Co3O4 films (in the range 1–15 nm) were sputter-deposited on hydrothermally grown ZnO NW arrays. The effect of a thin layer of the Al2O3 buffer layer between ZnO and Co3O4 was investigated, which may inhibit charge recombination, boosting device performance. The photoresponse of the ZnO–Al2O3–Co3O4 system at zero bias is 6 times higher compared to that of ZnO–Co3O4. The responsivity (R) and specific detectivity (D*) of the best device were 21.80 mA W–1and 4.12 × 1012 Jones, respectively. These results suggest a novel p–n junction structure to develop all-oxide UV–vis photodetectors based on stable, nontoxic, low-cost materials.
  •  
2.
  • Marković, Igor, et al. (författare)
  • Electronically driven spin-reorientation transition of the correlated polar metal Ca3Ru2O7
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 117:27, s. 15524-15529
  • Tidskriftsartikel (refereegranskat)abstract
    • The interplay between spin-orbit coupling and structural inversion symmetry breaking in solids has generated much interest due to the nontrivial spin and magnetic textures which can result. Such studies are typically focused on systems where large atomic number elements lead to strong spin-orbit coupling, in turn rendering electronic correlations weak. In contrast, here we investigate the temperature-dependent electronic structure of Ca3Ru2O7, a 4d oxide metal for which both correlations and spin-orbit coupling are pronounced and in which octahedral tilts and rotations combine to mediate both global and local inversion symmetry-breaking polar distortions. Our angle-resolved photoemission measurements reveal the destruction of a large hole-like Fermi surface upon cooling through a coupled structural and spinreorientation transition at 48 K, accompanied by a sudden onset of quasiparticle coherence. We demonstrate how these result from band hybridization mediated by a hidden Rashba-type spin- orbit coupling. This is enabled by the bulk structural distortions and unlocked when the spin reorients perpendicular to the local symmetry-breaking potential at the Ru sites. We argue that the electronic energy gain associated with the band hybridization is actually the key driver for the phase transition, reflecting a delicate interplay between spin-orbit coupling and strong electronic correlations and revealing a route to control magnetic ordering in solids.
  •  
3.
  • Marques, Carolina A., et al. (författare)
  • Spin-orbit coupling induced Van Hove singularity in proximity to a Lifshitz transition in Sr4Ru3O10
  • 2024
  • Ingår i: npj Quantum Materials. - 2397-4648. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Van Hove singularities (VHss) in the vicinity of the Fermi energy often play a dramatic role in the physics of strongly correlated electron materials. The divergence of the density of states generated by VHss can trigger the emergence of phases such as superconductivity, ferromagnetism, metamagnetism, and density wave orders. A detailed understanding of the electronic structure of these VHss is therefore essential for an accurate description of such instabilities. Here, we study the low-energy electronic structure of the trilayer strontium ruthenate Sr4Ru3O10, identifying a rich hierarchy of VHss using angle-resolved photoemission spectroscopy and millikelvin scanning tunneling microscopy. Comparison of k-resolved electron spectroscopy and quasiparticle interference allows us to determine the structure of the VHss and demonstrate the crucial role of spin-orbit coupling in shaping them. We use this to develop a minimal model from which we identify a mechanism for driving a field-induced Lifshitz transition in ferromagnetic metals.
  •  
4.
  • Siemann, Gesa R., et al. (författare)
  • Spin-orbit coupled spin-polarised hole gas at the CrSe2-terminated surface of AgCrSe2
  • 2023
  • Ingår i: npj Quantum Materials. - 2397-4648. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In half-metallic systems, electronic conduction is mediated by a single spin species, offering enormous potential for spintronic devices. Here, using microscopic-area angle-resolved photoemission, we show that a spin-polarised two-dimensional hole gas is naturally realised in the polar magnetic semiconductor AgCrSe2 by an intrinsic self-doping at its CrSe2-terminated surface. Through comparison with first-principles calculations, we unveil a striking role of spin-orbit coupling for the surface hole gas, unlocked by both bulk and surface inversion symmetry breaking, suggesting routes for stabilising complex magnetic textures in the surface layer of AgCrSe2.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy