SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Moran Mary Ann) "

Search: WFRF:(Moran Mary Ann)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Karlsson, Christofer M. G., et al. (author)
  • Different gene expression responses in two Baltic Sea heterotrophic model bacteria to dinoflagellate dissolved organic matter
  • Other publication (other academic/artistic)abstract
    • Phytoplankton release massive amounts of dissolved organic matter (DOM) into the water column during recurring blooms in coastal waters and inland seas. The released DOM includes dissolved organic carbon, nitrogen and phosphorus, in a complex mixture of both known and unknown compounds, and is a rich nutrient source for heterotrophic bacteria. The metabolic activity of heterotrophic bacteria during and after phytoplankton blooms can hence be expected to reflect the characteristics of the released DOM. With this in mind, we wanted to investigate if bacterioplankton could be used as “living sensors” of phytoplankton DOM quantity and quality, and to trace the flow of nutrients in the ecosystem. We used transcriptional activity from Baltic Sea bacterial isolates (Polaribacter sp. BAL334 (Flavobacteriia) and Brevundimonas sp. BAL450 (Alphaproteobacteria)) exposed to DOM derived from the dinoflagellate Prorocentrum minimum in exponential and stationary growth phases respectively. We observed strong responses both in terms of physiology – bacterial abundance – and the expressed metabolic pathways – e.g. Membrane Transport, Fatty Acids, Lipids and Isoprenoids – of the populations in samples exposed to dinoflagellate DOM compared with controls. Particularly striking was the increased expression of Ton and Tol transport systems, commonly associated with uptake of complex molecules, in both isolates. Equally important were the differences in metabolic responses between the two isolates, caused by differences in gene repertoire between them, emphasizing the importance of separating the responses of different taxa in analyses of community sequence data. Differences in response to DOM sourced from exponentially and stationary growing dinoflagellates were less pronounced, although not absent, than differences between the bacterial isolates. This suggests that shifts in metabolism during the different phases of a phytoplankton bloom might be detectable in individual bacterial populations. To conclude, our work opened a door to the future use of bacterioplankton as living sensors of environmental status, particularly with respect to phytoplankton blooms.
  •  
3.
  • Osbeck, Christofer M. G., et al. (author)
  • Divergent gene expression responses in two Baltic Sea heterotrophic model bacteria to dinoflagellate dissolved organic matter
  • 2022
  • In: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 17:11
  • Journal article (peer-reviewed)abstract
    • Phytoplankton release massive amounts of dissolved organic matter (DOM) into the water column during recurring blooms in coastal waters and inland seas. The released DOM encompasses a complex mixture of both known and unknown compounds, and is a rich nutrient source for heterotrophic bacteria. The metabolic activity of bacteria during and after phytoplankton blooms can hence be expected to reflect the characteristics of the released DOM. We therefore investigated if bacterioplankton could be used as "living sensors" of phytoplankton DOM quantity and/or quality, by applying gene expression analyses to identify bacterial metabolisms induced by DOM. We used transcriptional analysis of two Baltic Sea bacterial isolates (Polaribacter sp. BAL334 [Flavobacteriia] and Brevundimonas sp. BAL450 [Alphaproteobacteria]) growing with DOM from axenic cultures of the dinoflagellate Prorocentrum minimum. We observed pronounced differences between the two bacteria both in growth and the expressed metabolic pathways in cultures exposed to dinoflagellate DOM compared with controls. Differences in metabolic responses between the two isolates were caused both by differences in gene repertoire between them (e.g. in the SEED categories for membrane transport, motility and photoheterotrophy) and the regulation of expression (e.g. fatty acid metabolism), emphasizing the importance of separating the responses of different taxa in analyses of community sequence data. Similarities between the bacteria included substantially increased expression of genes for Ton and Tol transport systems in both isolates, which are commonly associated with uptake of complex organic molecules. Polaribacter sp. BAL334 showed stronger metabolic responses to DOM harvested from exponential than stationary phase dinoflagellates (128 compared to 26 differentially expressed genes), whereas Brevundimonas sp. BAL450 responded more to the DOM from stationary than exponential phase dinoflagellates (33 compared to 6 differentially expressed genes). These findings suggest that shifts in bacterial metabolisms during different phases of phytoplankton blooms can be detected in individual bacterial species and can provide insights into their involvement in DOM transformations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view