SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Morandeira Ana) "

Sökning: WFRF:(Morandeira Ana)

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • El-Zohry, Ahmed M. (författare)
  • Exploring Organic Dyes for Grätzel Cells Using Time-Resolved Spectroscopy
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Grätzel cells or Dye-Sensitized Solar Cells (DSSCs) are considered one of the most promising methods to convert the sun's energy into electricity due to their low cost and simple technology of production. The Grätzel cell is based on a photosensitizer adsorbed on a low band gap semiconductor. The photosensitizer can be a metal complex or an organic dye. Organic dyes can be produced on a large scale resulting in cheaper dyes than complexes based on rare elements. However, the performance of Grätzel cells based on metal-free, organic dyes is not high enough yet. The dye's performance depends primarily on the electron dynamics. The electron dynamics in Grätzel cells includes electron injection, recombination, and regeneration. Different deactivation processes affect the electron dynamics and the cells’ performance.In this thesis, the electron dynamics was explored by various time-resolved spectroscopic techniques, namely time-correlated single photon counting, streak camera, and femtosecond transient absorption. Using these techniques, new deactivation processes for organic dyes used in DSSCs were uncovered. These processes include photoisomerization, and quenching through complexation with the electrolyte. These deactivation processes affect the performance of organic dyes in Grätzel cells, and should be avoided. For instance, the photoisomerization can compete with the electron injection and produce isomers with unknown performance. Photoisomerization as a general phenomenon in DSSC dyes has not been shown before, but is shown to occur in several organic dyes, among them D149, D102, L0 and L0Br. In addition, D149 forms ground state complexes with the standard iodide/triiodide electrolyte, which directly affect the electron dynamics on TiO2. Also, new dyes were designed with the aim of using ferrocene(s) as intramolecular regenerators, and their dynamics was studied by transient absorption.This thesis provides deeper insights into some deactivation processes of organic dyes used in DSSCs. New rules for the design of organic dyes, based on these insights, can further improve the efficiency of DSSCs. 
  •  
3.
  •  
4.
  •  
5.
  • Lissau, Jonas Sandby, et al. (författare)
  • Anchoring Energy Acceptors to Nanostructured ZrO2 Enhances Photon Upconversion by Sensitized Triplet-Triplet Annihilation Under Simulated Solar Flux
  • 2013
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 117:28, s. 14493-14501
  • Tidskriftsartikel (refereegranskat)abstract
    • Photon upconversion by sensitized triplet-triplet annihilation (UC-STTA) is a promising strategy for boosting the theoretical maximum efficiency of single threshold solar cells, in particular, dye-sensitized solar cells (DSSCs). Here, we report a substantial increase in the efficiency of UC-STTA on a nanostructured surface, using noncoherent excitation light with intensities as low as 0.5 mW cm(-2), easily achieved under sun illumination. The studied surface was a mesoporous ZrO2 film working as a proxy system for the study of photophysics relevant to DSSCs. A well-known UC-STTA "emitter" dye, 9,10-diphenylanthracene (DPA), was chemically modified to yield methyl 4-(10-p-tolylanthracen-9-yl)benzoate (MTAB), which was chemisorbed onto ZrO2. The "sensitizer" dye, platinum(II) octaethylporphyrin (PtOEP), was free in butyronitrile (BuN) solution surrounding the ZrO2 nanostructure. A rigorous oxygen removal minimized photodegradation of the dyes and enhanced triplet-triplet annihilation efficiency. The system already approaches the so-called "strong annihilation limit" at light intensities below 8 mW cm(-2). Highly efficient triplet-triplet annihilation is a requisite for the use of UC-STTA in DSSCs. Time-resolved data show that the limiting process in the UC-STTA mechanism of the present system is the dynamic triplet energy transfer step from PtOEP in solution to MTAB on the surface of ZrO2. This result can guide the way toward a better understanding and further efficiency improvement of UC-STTA on nanocrystalline metal oxides.
  •  
6.
  •  
7.
  •  
8.
  • Lissau, Jonas Sandby, 1984- (författare)
  • Non-Coherent Photon Upconversion on Dye-Sensitized Nanostructured ZrO2 Films for Efficient Solar Light Harvesting
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Photon upconversion by sensitized triplet–triplet annihilation (UC-STTA) is a photophysical process that facilitates the conversion of two low-energy photons into a single high-energy photon. A low-energy photon is absorbed by a sensitizer molecule that produces a triplet excited state which is transferred to an emitter molecule. When two emitter triplet states encounter each other, TTA can take place to produce a singlet excited state which decays by emission of a high-energy (upconverted) photon. While traditional single-threshold dye-sensitized solar cells (DSSCs) have a maximum efficiency limit of ca. 30%, it has been predicted theoretically that implementation of UC-STTA in DSSCs could increase that efficiency to more than 40%.A possible way to implement UC-STTA into DSSCs, would be to replace the standard sensi- tized nanostructured TiO2 photoanodes by upconverting ones loaded with emitter molecules. Following TTA, the excited emitter molecule would be quenched by injection of a high-energy electron into the conduction band of the TiO2. To explore the practical aspects of this strategy for a highly efficient DSSC, in this thesis UC-STTA is studied in model systems based on nanostructured ZrO2 films. These ZrO2 films are a good proxy for the TiO2 films used in DSSCs, and allow for relatively easy optimization and study of UC-STTA by allowing measurements of the upconverted photons without the complications of electron injection into the film.Herein it is experimentally proven that UC-STTA is viable on nanostructured metal oxide films under non-coherent irradiation with intensities comparable to sunlight. Two different system architectures are studied, differing in the position of the molecular components involved in the UC-STTA mechanism. Both architectures have the emitter molecules adsorbed onto the ZrO2 surface, but the sensitizers are positioned either in solution around the nanostructure, or co-adsorbed with the emitters onto the ZrO2 surface. A set of challenges in the study and optimization of the UC-STTA process is identified for each type of system. Proposals are also given for how to further improve the understanding and UC-STTA optimization of these systems toward application in DSSCs to overcome the present solar energy conversion efficiency limit.
  •  
9.
  • Lissau, Jonas Sandby, et al. (författare)
  • Photon Upconversion from Chemically Bound Triplet Sensitizers and Emitters on Mesoporous ZrO2 : Implications for Solar Energy Conversion
  • 2015
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 119:46, s. 25792-25806
  • Tidskriftsartikel (refereegranskat)abstract
    • Photon upconversion by sensitized triplet-triplet annihilation (UC-STTA) is studied in systems with triplet sensitizers and emitter molecules cochemisorbed onto nanostructured ZrO2 films. UC-STTA is a promising strategy to overcome the Shockley-Queisser efficiency limit of single-threshold solar cells. The dye-loaded mesoporous ZrO2 films studied herein allow high molecular densities and are good proxy systems for the study of photophysics relevant to dye-sensitized solar cells. Two sensitizer/emitter dye pairs are studied: platinum(II) deuteroporphyrin IX dicarboxylic acid/4,4'-(10-(anthracene-9,10-diyl)dibenzoic acid and platinum(II) deuteroporphyrin IX dimethyl ester/methyl 4-(10-(p-tolyl)anthracen-9-yl)benzoate. Both dye pairs are closely related to the standard UC-STTA molecular pair platinum(II) octaethylporphyrin (PtOEP)/9,10-diphenylanthracene (DPA). By chemically anchoring the upconverting dye pairs onto ZrO2 films a significant improvement in UC-STTA efficiency is achieved with respect to previously studied cophysisorbed PtOEP/DPA. Controlled variation of the sensitizer/emitter dye ratios onto the surface shows that new energy loss mechanisms appear at high sensitizer surface coverage. Spectral signatures of porphyrin aggregates suggest separate sensitizer domains form, which limits the triplet sensitization of emitter molecules. The nanosecond time scale rise and decay of the observed UC emission are likely linked to the sample stability over time; UC emission is observed 1 year after sample preparation. These are promising properties for the application of this type of system for solar energy conversion.
  •  
10.
  • Lissau, Jonas Sandby, et al. (författare)
  • Photon Upconversion on Dye-Sensitized Nanostructured ZrO2 Films
  • 2011
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 115:46, s. 23226-23232
  • Tidskriftsartikel (refereegranskat)abstract
    • Photon upconversion based on sensitized triplet?triplet annihilation has been observed on nanocrystalline ZrO2 films cosensitized with platinum(II) octaethylporphyrin (triplet sensitizer) and 9,10-diphenylanthracene (singlet emitter) under sunlight-like conditions (noncoherent excitation source, excitation light intensity as low as 5 mW/cm2). Time-resolved emission measurements showed a fast rise of the upconverted signal (≀10 ns), suggesting that triplet energy migration most probably occurs through a ?static? Dexter mechanism. To the best of our knowledge, this is the first observation of photon upconversion based on sensitized triplet?triplet annihilation on a sensitized mesoporous metal oxide. Implementation of similar systems in dye-sensitized solar cells would increase the maximum theoretical efficiency of these devices from 30% to over 40%.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy