SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Morandi Vittorio) "

Sökning: WFRF:(Morandi Vittorio)

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aftab, Umair, et al. (författare)
  • Nickel-cobalt bimetallic sulfide NiCo(2)S(4)nanostructures for a robust hydrogen evolution reaction in acidic media
  • 2020
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 10:37, s. 22196-22203
  • Tidskriftsartikel (refereegranskat)abstract
    • There are many challenges associated with the fabrication of efficient, inexpensive, durable and very stable nonprecious metal catalysts for the hydrogen evolution reaction (HER). In this study, we have designed a facile strategy by tailoring the concentration of precursors to successfully obtain nickel-cobalt bimetallic sulfide (NiCo2S4) using a simple hydrothermal method. The morphology of the newly prepared NiCo(2)S(4)comprised a mixture of microparticles and nanorods, which were few microns in dimension. The crystallinity of the composite sample was found to be excellent with a cubic phase. The sample that contained a higher amount of cobalt compared to nickel and produced single-phase NiCo(2)S(4)exhibited considerably improved HER performance. The variation in the salt precursor concentration during the synthesis of a material is a simple methodology to produce a scalable platinum-free catalyst for HER. The advantageous features of the multiple active sites of cobalt in the CN-21 sample as compared to that for pristine CoS and NiS laid the foundation for the provision of abundant active edges for HER. The composite sample produced a current density of 10 mA cm(-2)at an overpotential of 345 mV. Also, it exhibited a Tafel value of 60 mV dec(-1), which predominantly ensured rapid charge transfer kinetics during HER. CN-21 was highly durable and stable for 30 hours. Electrochemical impedance spectroscopy showed that the charge transfer resistance was 21.88 ohms, which further validated the HER polarization curves and Tafel results. CN-21 exhibited a double layer capacitance of 4.69 mu F cm(-2)and a significant electrochemically active surface area of 134.0 cm(2), which again supported the robust efficiency for HER. The obtained results reveal that our developed NiCo(2)S(4)catalyst has a high density of active edges, and it is a non-noble metal catalyst for the hydrogen evolution reaction. The present findings provide an alternative strategy and an active nonprecious material for the development of energy-related applications.
  •  
2.
  • Aftab, Umair, et al. (författare)
  • Two step synthesis of TiO2–Co3O4 composite for efficient oxygen evolution reaction
  • 2021
  • Ingår i: International journal of hydrogen energy. - : Elsevier. - 0360-3199 .- 1879-3487. ; 46:13, s. 9110-9122
  • Tidskriftsartikel (refereegranskat)abstract
    • For an active hydrogen gas generation through water dissociation, the sluggish oxygen evolution reaction (OER) kinetics due to large overpotential is a main hindrance. Herein, a simple approach is used to produce composite material based on TiO2/Co3O4 for efficient OER and overpotential is linearly reduced with increasing amount of TiO2. The scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) investigations reveal the wire like morphology of composite materials, formed by the self-assembly of nanoparticles. The titania nanoparticles were homogenously distributed on the larger Co3O4 nanoparticles. The powder x-ray diffraction revealed a tetragonal phase of TiO2 and the cubic phase of Co3O4 in the composite materials. Composite samples with increasing TiO2 content were obtained (18%, 33%, 41% and 65% wt.). Among the composites, cobalt oxide-titanium oxide with the highest TiO2 content (CT-20) possesses the lowest overpotential for OER with a Tafel slope of 60 mV dec−1 and an exchange current density of 2.98 × 10−3A/cm2. The CT-20 is highly durable for 45 h at different current densities of 10, 20 and 30 mA/cm2. Electrochemical impedance spectroscopy (EIS) confirmed the fast charge transport for the CT-20 sample, which potentially accelerated the OER kinetics. These results based on a two-step methodology for the synthesis of TiO2/Co3O4 material can be useful and interesting for various energy storage and energy conversion systems.
  •  
3.
  • Backes, Claudia, et al. (författare)
  • Production and processing of graphene and related materials
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
4.
  • Bhatti, Adeel Liaquat, et al. (författare)
  • Nanostructured Co3O4 electrocatalyst for OER : The role of organic polyelectrolytes as soft templates
  • 2021
  • Ingår i: Electrochimica Acta. - : Elsevier. - 0013-4686 .- 1873-3859. ; 398
  • Tidskriftsartikel (refereegranskat)abstract
    • Designing an efficient electrocatalyst for the oxygen evolution reaction (OER) in alkaline media is highly needed but very challenging task. Herein, we used organic polyelectrolytes such as (carboxymethyl cellulose) CMC and polyacrylamide polymers for the growth of Co3O4 nanostructures by aqueous chemical growth method. The morphology and composition studies were performed on scanning electron microscopy (SEM), energy dispersive X-ray (EDX), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM) techniques. The structural properties and the surface chemistry of the Co3O4 electrocatalysts were correlated to the OER performance, and the enhancement mechanism with respect to pristine Co3O4 was observed to be specifically related to the polyelectrolyte templating role.Co3O4@CMC composites displayed reduced crystallite size, producing OER overpotential as low as 290 mV at 10 mAcm−2 in 1.0 KOH and Tafel slope of 71 mVdec−1, suggesting fast transfer of intermediates and electrons during water electrolysis. On the other hand, the use of polyacrylamide and its different templating mechanism resulted in similar crystallite size, but preferential exposed faces and larger surface vacancies content, as demonstrated by HR-TEM and XPS, respectively. Consistently, this material displays cutting-edge OER performance, such as overpotential of 260 mV at 10 mAcm−2 and a low Tafel slope of 63 mVdec−1. The proposed strategy for the preparation of Co3O4 nanostructures in the presence of CMC and polyacrylamide is facile, mass production, thus it could equally contributed towards the realization of hydrogen energy. Therefore, these nanostructures of Co3O4 can be regarded as an alternative and promising materials for the different electrochemical applications including fuel cells, metal air batteries, overall water electrolysis and other energy storage devices.
  •  
5.
  • Comini, Elisabetta, et al. (författare)
  • Effects of Ta/Nb-doping on titania-based thin films for gas-sensing
  • 2005
  • Ingår i: Sensors and actuators. B, Chemical. - : Elsevier BV. - 0925-4005 .- 1873-3077. ; 108:1-2 SPEC. ISS., s. 21-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Thin films of titania with the addition of niobium and tantalum have been achieved by reactive sputtering process. Structural and morphological studies have been carried out by means of XRD, RBS, TEM and AFM in order to correlate the microstructural features to the sensing performance of the layers. The films proved sensitive to ethanol and carbon monoxide and ammonia. In the case of niobium addition, it was shown that annealing temperature and niobium content strongly influence the gas response of the films converting a n-type response, which is typical of pure TiO2 and of most of metal-oxide sensors, to a p-type response; this peculiarity is crucial for the discrimination of different gases. In the case of tantalum addition, the annealing treatment at 800 °C led only to a phase transformation that reduced the sensing performance of the layer. High sensitivity to CO is achieved with anatase or mixed anatase and rutile phases, while the rutile phase only exhibit a low gas sensitivity. © 2005 Elsevier B.V. All rights reserved.
  •  
6.
  • Di Maria, Francesca, et al. (författare)
  • Controlling the Functional Properties of Oligothiophene Crystalline Nano/Microfibers via Tailoring of the Self-Assembling Molecular Precursors
  • 2018
  • Ingår i: Advanced Functional Materials. - : John Wiley & Sons. - 1616-301X .- 1616-3028. ; 28:32
  • Tidskriftsartikel (refereegranskat)abstract
    • Oligothiophenes are π-conjugated semiconducting and fluorescent molecules whose self-assembly properties are widely investigated for application in organic electronics, optoelectronics, biophotonics, and sensing. Here an approach to the preparation of crystalline oligothiophene nano/microfibers is reported based on the use of a “sulfur overrich” quaterthiophene building block, T4S4 , containing in its covalent network all the information needed to promote the directional, π–π stacking-driven, self-assembly of Y-T4S4-Y oligomers into fibers with hierarchical supramolecular arrangement from nano- to microscale. It is shown that when Y varies from unsubstituted thiophene to thiophene substituted with electron-withdrawing groups, a wide redistribution of the molecular electronic charge takes place without substantially affecting the aggregation modalities of the oligomer. In this way, a structurally comparable series of fibers is obtained having progressively varying optical properties, redox potentials, photoconductivity, and type of prevailing charge carriers (from p- to n-type). With the aid of density functional theory (DFT) calculations, combined with powder X-ray diffraction data, a model accounting for the growth of the fibers from molecular to nano- and microscale is proposed
  •  
7.
  • Fedorenko, Svetlana V., et al. (författare)
  • Silica Nanospheres Coated by Ultrasmall Ag0 Nanoparticles for Oxidative Catalytic Application
  • 2017
  • Ingår i: Colloid and Interface Science Communications. - : Elsevier. - 2215-0382. ; 21, s. 1-5
  • Tidskriftsartikel (refereegranskat)abstract
    • The present work introduces optimal modifiсation of core-shell composite nanomaterial, where small (2–8 nm) Ag0 nanoparticles are deposited onto large (about 140 nm) silica spheres for application in oxidative catalysis. The size of Ag0 and density of its deposition onto silica spheres was modified by the post treatment of initially deposited Ag0 (about 30 nm) by hydrogen peroxide in specific conditions. The comparison of catalytic effect of the post-treated and initial SN-Ag0 in electrochemical phosphonation of benzo(thia)oxazoles by diethyl phosphite in oxidative conditions revealed the difference between the composite nanoparticles. In particular, the post-treated SNs-Ag0 nanoparticles exhibit efficient catalytic effect in oxidative conditions resulting in facile and green method for synthesis of phosphonated benzooxa(thia)zoles, while no catalytic effect is observed under the use of larger Ag0 nanoparticles deposited onto silica spheres. The use of Ag0-based nanomaterial in oxidative catalysis had been never demonstrated before
  •  
8.
  • Ghamgosar, Pedram, 1979-, et al. (författare)
  • Self-Powered Photodetectors Based on Core-Shell ZnO-Co3O4 Nanowire Heterojunctions
  • 2019
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 11:26, s. 23454-23462
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-powered photodetectors operating in the UV–visible–NIR window made of environmentally friendly, earth abundant, and cheap materials are appealing systems to exploit natural solar radiation without external power sources. In this study, we propose a new p–n junction nanostructure, based on a ZnO–Co3O4 core–shell nanowire (NW) system, with a suitable electronic band structure and improved light absorption, charge transport, and charge collection, to build an efficient UV–visible–NIR p–n heterojunction photodetector. Ultrathin Co3O4 films (in the range 1–15 nm) were sputter-deposited on hydrothermally grown ZnO NW arrays. The effect of a thin layer of the Al2O3 buffer layer between ZnO and Co3O4 was investigated, which may inhibit charge recombination, boosting device performance. The photoresponse of the ZnO–Al2O3–Co3O4 system at zero bias is 6 times higher compared to that of ZnO–Co3O4. The responsivity (R) and specific detectivity (D*) of the best device were 21.80 mA W–1and 4.12 × 1012 Jones, respectively. These results suggest a novel p–n junction structure to develop all-oxide UV–vis photodetectors based on stable, nontoxic, low-cost materials.
  •  
9.
  • Gilzad Kohan, Mojtaba, et al. (författare)
  • Plasma assisted vapor solid deposition of Co3O4 tapered nanorods for energy applications
  • 2019
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 7:46, s. 26302-26310
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-standing, 1-dimensional (1D) structures of p-type metal oxide (MOx) have been the focus of considerable attention, due to their unique properties in energy storage and solar light conversion. However, the practical performance of p-type MOx is intrinsically limited by their interfacial defects and strong charge recombination losses. Single crystalline assembly can significantly reduce recombination at interface and grain boundaries. Here, we present a one-step route based on plasma assisted physical vapor deposition (PVD), for the rational and scalable synthesis of single crystalline 1D vertically aligned Co3O4 tapered nanorods (NRs). The effect of PVD parameters (deposition pressure, temperature and duration) in tuning the morphology, composition and crystalline structure of resultant NRs is investigated. Crystallographic data obtained from X-ray diffraction and high-resolution transmission electron microscopy (TEM) indicated the single crystalline nature of NRs with [111] facet preferred orientation. The NRs present two optical band gaps at about 1.48 eV and 2.1 eV. Current–voltage (I–V) characteristic of the Co3O4 NRs electrodes, 400 nm long, present two times higher current density at −1 V forward bias, compared to the benchmarking thin film counterpart. These array structures exhibit good electrochemical performance in lithium-ion adsorption–desorption processes. Among all, the longest Co3O4 NRs electrodes delivers a 1438.4 F g−1 at current density of 0.5 mA cm−2 and presents 98% capacitance retention after 200 charge–discharge cycles. The very low values of charge transfer resistance (Rct = 5.2 Ω for 400 nm long NRs) of the NRs testifies their high conductivity. Plasma assisted PVD is demonstrated as a facile technique for synthesizing high quality 1D structures of Co3O4, which can be of interest for further development of different desirable 1D systems based on transition MOx.
  •  
10.
  • Infantes-Molina, Antonia, et al. (författare)
  • Au-Decorated Ce–Ti Mixed Oxides for Efficient CO Preferential Photooxidation
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:34, s. 38019-38030
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the photocatalytic behavior of gold nanoparticles supported on CeO2–TiO2 nanostructured matrixes in the CO preferential oxidation in H2-rich stream (photo-CO-PROX), by modifying the electronic band structure of ceria through addition of titania and making it more suitable for interacting with free electrons excited in gold nanoparticles through surface plasmon resonance. CeO2 samples with different TiO2 concentrations (0–20 wt %) were prepared through a slow coprecipitation method in alkaline conditions. The synthetic route is surfactant-free and environmentally friendly. Au nanoparticles (<1.0 wt % loading) were deposited on the surface of the CeO2–TiO2 oxides by deposition–precipitation. A benchmarking sample was also considered, prepared by standard fast coprecipitation, to assess how a peculiar morphology can affect the photocatalytic behavior. The samples appeared organized in a hierarchical needle-like structure, with different morphologies depending on the Ti content and preparation method, with homogeneously distributed Au nanoparticles decorating the Ce–Ti mixed oxides. The morphology influences the preferential photooxidation of CO to CO2 in excess of H2 under simulated solar light irradiation at room temperature and atmospheric pressure. The Au/CeO2–TiO2 systems exhibit much higher activity compared to a benchmark sample with a non-organized structure. The most efficient sample exhibited CO conversions of 52.9 and 80.2%, and CO2 selectivities equal to 95.3 and 59.4%, in the dark and under simulated sunlight, respectively. A clear morphology–functionality correlation was found in our systematic analysis, with CO conversion maximized for a TiO2 content equal to 15 wt %. The outcomes of this study are significant advancements toward the development of an effective strategy for exploitation of hydrogen as a viable clean fuel in stationary, automotive, and portable power generators.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy