SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moreira Catia) "

Sökning: WFRF:(Moreira Catia)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abelev, Betty, et al. (författare)
  • Long-range angular correlations on the near and away side in p-Pb collisions at root S-NN=5.02 TeV
  • 2013
  • Ingår i: Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics. - : Elsevier BV. - 0370-2693. ; 719:1-3, s. 29-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Angular correlations between charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV for transverse momentum ranges within 0.5 < P-T,P-assoc < P-T,P-trig < 4 GeV/c. The correlations are measured over two units of pseudorapidity and full azimuthal angle in different intervals of event multiplicity, and expressed as associated yield per trigger particle. Two long-range ridge-like structures, one on the near side and one on the away side, are observed when the per-trigger yield obtained in low-multiplicity events is subtracted from the one in high-multiplicity events. The excess on the near-side is qualitatively similar to that recently reported by the CMS Collaboration, while the excess on the away-side is reported for the first time. The two-ridge structure projected onto azimuthal angle is quantified with the second and third Fourier coefficients as well as by near-side and away-side yields and widths. The yields on the near side and on the away side are equal within the uncertainties for all studied event multiplicity and p(T) bins, and the widths show no significant evolution with event multiplicity or p(T). These findings suggest that the near-side ridge is accompanied by an essentially identical away-side ridge. (c) 2013 CERN. Published by Elsevier B.V. All rights reserved.
  •  
2.
  • Abelev, Betty, et al. (författare)
  • Measurement of prompt J/psi and beauty hadron production cross sections at mid-rapidity in pp collisions at root s=7 TeV
  • 2012
  • Ingår i: Journal of High Energy Physics. - 1029-8479. ; :11
  • Tidskriftsartikel (refereegranskat)abstract
    • The ALICE experiment at the LHC has studied J/psi production at mid-rapidity in pp collisions at root s = 7 TeV through its electron pair decay on a data sample corresponding to an integrated luminosity L-int = 5.6 nb(-1). The fraction of J/psi from the decay of long-lived beauty hadrons was determined for J/psi candidates with transverse momentum p(t) > 1,3 GeV/c and rapidity vertical bar y vertical bar < 0.9. The cross section for prompt J/psi mesons, i.e. directly produced J/psi and prompt decays of heavier charmonium states such as the psi(2S) and chi(c) resonances, is sigma(prompt J/psi) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 8.3 +/- 0.8(stat.) +/- 1.1 (syst.)(-1.4)(+1.5) (syst. pol.) mu b. The cross section for the production of b-hadrons decaying to J/psi with p(t) > 1.3 GeV/c and vertical bar y vertical bar < 0.9 is a sigma(J/psi <- hB) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 1.46 +/- 0.38 (stat.)(-0.32)(+0.26) (syst.) mu b. The results are compared to QCD model predictions. The shape of the p(t) and y distributions of b-quarks predicted by perturbative QCD model calculations are used to extrapolate the measured cross section to derive the b (b) over bar pair total cross section and d sigma/dy at mid-rapidity.
  •  
3.
  • Abelev, Betty, et al. (författare)
  • Underlying Event measurements in pp collisions at root s=0.9 and 7 TeV with the ALICE experiment at the LHC
  • 2012
  • Ingår i: Journal of High Energy Physics. - 1029-8479. ; :7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%.
  •  
4.
  • Calixto, Ana R., et al. (författare)
  • GTP Hydrolysis Without an Active Site Base : A Unifying Mechanism for Ras and Related GTPases
  • 2019
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 141:27, s. 10684-10701
  • Tidskriftsartikel (refereegranskat)abstract
    • GTP hydrolysis is a biologically crucial reaction, being involved in regulating almost all cellular processes. As a result, the enzymes that catalyze this reaction are among the most important drug targets. Despite their vital importance and decades of substantial research effort, the fundamental mechanism of enzyme-catalyzed GTP hydrolysis by GTPases remains highly controversial. Specifically, how do these regulatory proteins hydrolyze GTP without an obvious general base in the active site to activate the water molecule for nucleophilic attack? To answer this question, we perform empirical valence bond simulations of GTPase-catalyzed GTP hydrolysis, comparing solvent- and substrate-assisted pathways in three distinct GTPases, Ras, Rab, and the G(alpha i), subunit of a heterotrimeric G-protein, both in the presence and in the absence of the corresponding GTPase activating proteins. Our results demonstrate that a general base is not needed in the active site, as the preferred mechanism for GTP hydrolysis is a conserved solvent-assisted pathway. This pathway involves the rate-limiting nucleophilic attack of a water molecule, leading to a short-lived intermediate that tautomerizes to form H2PO4- and GDP as the final products. Our fundamental biochemical insight into the enzymatic regulation of GTP hydrolysis not only resolves a decades-old mechanistic controversy but also has high relevance for drug discovery efforts. That is, revisiting the role of oncogenic mutants with respect to our mechanistic findings would pave the way for a new starting point to discover drugs for (so far) "undruggable" GTPases like Ras.
  •  
5.
  • Calixto, Ana Rita, et al. (författare)
  • Recent Advances in Understanding Biological GTP Hydrolysis through Molecular Simulation
  • 2020
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 5:9, s. 4380-4385
  • Forskningsöversikt (refereegranskat)abstract
    • GTP hydrolysis is central to biology, being involved in regulating a wide range of cellular processes. However, the mechanisms by which GTPases hydrolyze this critical reaction remain controversial, with multiple mechanistic possibilities having been proposed based on analysis of experimental and computational data. In this mini-review, we discuss advances in our understanding of biological GTP hydrolysis based on recent computational studies and argue in favor of solvent-assisted hydrolysis as a conserved mechanism among GTPases. A concrete understanding of the fundamental mechanisms by which these enzymes facilitate GTP hydrolysis will have significant impact both for drug discovery efforts and for unraveling the role of oncogenic mutations.
  •  
6.
  • Corbella Morató, Marina, et al. (författare)
  • The N-terminal Helix-Turn-Helix Motif of Transcription Factors MarA and Rob Drives DNA Recognition
  • 2021
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 125:25, s. 6791-6806
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA-binding proteins play an important role in gene regulation and cellular function. The transcription factors MarA and Rob are two homologous members of the AraC/XylS family that regulate multidrug resistance. They share a common DNA-binding domain, and Rob possesses an additional C-terminal domain that permits binding of low-molecular weight effectors. Both proteins possess two helix-turn-helix (HTH) motifs capable of binding DNA; however, while MarA interacts with its promoter through both HTH-motifs, prior studies indicate that Rob binding to DNA via a single HTH-motif is sufficient for tight binding. In the present work, we perform microsecond time scale all-atom simulations of the binding of both transcription factors to different DNA sequences to understand the determinants of DNA recognition and binding. Our simulations characterize sequence-dependent changes in dynamical behavior upon DNA binding, showcasing the role of Arg40 of the N-terminal HTH-motif in allowing for specific tight binding. Finally, our simulations demonstrate that an acidic C-terminal loop of Rob can control the DNA binding mode, facilitating interconversion between the distinct DNA binding modes observed in MarA and Rob. In doing so, we provide detailed molecular insight into DNA binding and recognition by these proteins, which in turn is an important step toward the efficient design of antivirulence agents that target these proteins.
  •  
7.
  • Magalhaes, Solange, et al. (författare)
  • Acacia Wood Fractionation Using Deep Eutectic Solvents : Extraction, Recovery, and Characterization of the Different Fractions
  • 2022
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 7:30, s. 26005-26014
  • Tidskriftsartikel (refereegranskat)abstract
    • The selective extraction and recovery of different lignocellulosic molecules of interest from forestry residues is increasing every day not only to satisfy the needs of driving a society toward more sustainable approaches and materials (rethinking waste as a valuable resource) but also because lignocellulosic molecules have several applications. For this purpose, the development of new sustainable and ecologically benign extraction approaches has grown significantly. Deep eutectic solvents (DESs) appear as a promising alternative for the processing and manipulation of biomass. In the present study, a DES formed using choline chloride and levulinic acid (ChCl:LA) was studied to fractionate lignocellulosic residues of acacia wood (Acacia dealbata Link), an invasive species in Portugal. Different parameters, such as temperature and extraction time, were optimized to enhance the yield and purity of recovered cellulose and lignin fractions. DESs containing LA were found to be promising solvent systems, as the hydrogen bond donor was considered relevant in relation to lignin extraction and cellulose concentration. On the other hand, the increase in temperature and extraction time increases the amount of extracted material from biomass but affects the purity of lignin. The most promising DES system, ChCELA in a ratio of 1:3, was found to not significantly depolymerize the extracted lignin, which presented a similar molecular weight to a la-aft lignin. Additionally, the P-31 NMR results revealed that the extracted lignin has a high content of phenolic OH groups, which favor its reactivity. A mixture of ChCl:LA may be considered a fully renewable solvent, and the formed DES presents good potential to fractionate wood residues.
  •  
8.
  • Moreira, Catia, et al. (författare)
  • The role of ligand-gated conformational changes in enzyme catalysis
  • 2019
  • Ingår i: Biochemical Society Transactions. - : Portland Press. - 0300-5127 .- 1470-8752. ; 47:5, s. 1449-1460
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural and biochemical studies on diverse enzymes have highlighted the importance of ligand-gated conformational changes in enzyme catalysis, where the intrinsic binding energy of the common phosphoryl group of their substrates is used to drive energetically unfavorable conformational changes in catalytic loops, from inactive open to catalytically competent closed conformations. However, computational studies have historically been unable to capture the activating role of these conformational changes. Here, we discuss recent experimental and computational studies, which can remarkably pinpoint the role of ligand-gated conformational changes in enzyme catalysis, even when not modeling the loop dynamics explicitly. Finally, through our joint analyses of these data, we demonstrate how the synergy between theory and experiment is crucial for furthering our understanding of enzyme catalysis
  •  
9.
  • Pfeiffer, Martin, et al. (författare)
  • Essential Functional Interplay of the Catalytic Groups in Acid Phosphatase
  • 2022
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 12:6, s. 3357-3370
  • Tidskriftsartikel (refereegranskat)abstract
    • The cooperative interplay between the functional devices of a preorganized active site is fundamental to enzyme catalysis. An in-depth understanding of this phenomenon is central to elucidating the remarkable efficiency of natural enzymes and provides an essential benchmark for enzyme design and engineering. Here, we study the functional interconnectedness of the catalytic nucleophile (His18) in an acid phosphatase by analyzing the consequences of its replacement with aspartate. We present crystallographic, biochemical, and computational evidence for a conserved mechanistic pathway via a phospho-enzyme intermediate on Asp18. Linear free-energy relationships for phosphoryl transfer from phosphomonoester substrates to His18/Asp18 provide evidence for the cooperative interplay between the nucleophilic and general-acid catalytic groups in the wild-type enzyme, and its substantial loss in the H18D variant. As an isolated factor of phosphatase efficiency, the advantage of a histidine compared to an aspartate nucleophile is similar to 10(4)-fold. Cooperativity with the catalytic acid adds >= 10(2)-fold to that advantage. Empirical valence bond simulations of phosphoryl transfer from glucose 1-phosphate to His and Asp in the enzyme explain the loss of activity of the Asp18 enzyme through a combination of impaired substrate positioning in the Michaelis complex, as well as a shift from early to late protonation of the leaving group in the H18D variant. The evidence presented furthermore suggests that the cooperative nature of catalysis distinguishes the enzymatic reaction from the corresponding reaction in solution and is enabled by the electrostatic preorganization of the active site. Our results reveal sophisticated discrimination in multifunctional catalysis of a highly proficient phosphatase active site.
  •  
10.
  • Vaz-Moreira, Ivone, et al. (författare)
  • Shinella fusca sp. nov., isolated from domestic waste compost
  • 2010
  • Ingår i: International journal of systematic and evolutionary microbiology. - : Microbiology Society. - 1466-5026 .- 1466-5034. ; 60:1, s. 144-148
  • Tidskriftsartikel (refereegranskat)abstract
    • A bacterium, designated strain DC-196(T), isolated from kitchen refuse compost was analysed by using a polyphasic approach. Strain DC-196(T) was characterized as a Gram-negative short rod that was catalase- and oxidase-positive, and able to grow at 10-40 degrees C, pH 6-9 and in NaCl concentrations as high as 3 %. Chemotaxonomically, C(18 : 1) was observed to be the predominant cellular fatty acid and ubiquinone 10 (Q10) was the predominant respiratory quinone. The G+C content of the genomic DNA was determined to be 66 mol%. On the basis of the genotypic, phenotypic and chemotaxonomic characteristics, strain DC-196(T) was assigned to the genus Shinella, although with distinctive features. At the time of writing, 16S rRNA gene sequence similarities of 97.6-96.8 % and the low DNA-DNA hybridization values of 38.2-32.2 % with the type strains of the three recognized Shinella species confirmed that strain DC-196(T) represents a novel species of the genus, for which the name Shinella fusca sp. nov. is proposed (type strain DC-196(T)=CCUG 55808(T)=LMG 24714(T)).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy