SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moreno Estar Sara) "

Sökning: WFRF:(Moreno Estar Sara)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arevalo-Martinez, Marycarmen, et al. (författare)
  • miR-126 contributes to the epigenetic signature of diabetic vascular smooth muscle and enhances antirestenosis effects of Kv1.3 blockers
  • 2021
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 53
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Restenosis after vessel angioplasty due to dedifferentiation of the vascular smooth muscle cells (VSMCs) limits the success of surgical treatment of vascular occlusions. Type 2 diabetes (T2DM) has a major impact on restenosis, with patients exhibiting more aggressive forms of vascular disease and poorer outcomes after surgery. Kv1.3 channels are critical players in VSMC proliferation. Kv1.3 blockers inhibit VSMCs MEK/ERK signalling and prevent vessel restenosis. We hypothesize that dysregulation of microRNAs (miR) play critical roles in adverse remodelling, contributing to Kv1.3 blockers efficacy in T2DM VSMCs. Methods and results: We used clinically relevant in vivo models of vascular risk factors (VRF) and vessels and VSMCs from T2DM patients. Resukts: Human T2DM vessels showed increased remodelling, and changes persisted in culture, with augmented VSMCs migration and proliferation. Moreover, there were downregulation of PI3K/AKT/mTOR and upregulation of MEK/ERK pathways, with increased miR-126 expression. The inhibitory effects of Kv1.3 blockers on remodelling were significantly enhanced in T2DM VSMCs and in VRF model. Finally, miR-126 overexpression confered “diabetic” phenotype to non-T2DM VSMCs by downregulating PI3K/AKT axis. Conclusions: miR-126 plays crucial roles in T2DM VSMC metabolic memory through activation of MEK/ERK pathway, enhancing the efficacy of Kv1.3 blockers in the prevention of restenosis in T2DM patients.
  •  
2.
  • Arévalo-Martínez, Marycarmen, et al. (författare)
  • Myocardin-Dependent Kv1.5 Channel Expression Prevents Phenotypic Modulation of Human Vessels in Organ Culture
  • 2019
  • Ingår i: Arteriosclerosis, Thrombosis, and Vascular Biology. - 1524-4636. ; 39:12, s. 273-286
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: We have previously described that changes in the expression of Kv channels associate to phenotypic modulation (PM), so that Kv1.3/Kv1.5 ratio is a landmark of vascular smooth muscle cells phenotype. Moreover, we demonstrated that the Kv1.3 functional expression is relevant for PM in several types of vascular lesions. Here, we explore the efficacy of Kv1.3 inhibition for the prevention of remodeling in human vessels, and the mechanisms linking the switch in Kv1.3 /Kv1.5 ratio to PM. Approach and Results: Vascular remodeling was explored using organ culture and primary cultures of vascular smooth muscle cells obtained from human vessels. We studied the effects of Kv1.3 inhibition on serum-induced remodeling, as well as the impact of viral vector-mediated overexpression of Kv channels or myocardin knock-down. Kv1.3 blockade prevented remodeling by inhibiting proliferation, migration, and extracellular matrix secretion. PM activated Kv1.3 via downregulation of Kv1.5. Hence, both Kv1.3 blockers and Kv1.5 overexpression inhibited remodeling in a nonadditive fashion. Finally, myocardin knock-down induced vessel remodeling and Kv1.5 downregulation and myocardin overexpression increased Kv1.5, while Kv1.5 overexpression inhibited PM without changing myocardin expression. CONCLUSIONS: We demonstrate that Kv1.5 channel gene is a myocardin-regulated, vascular smooth muscle cells contractile marker. Kv1.5 downregulation upon PM leaves Kv1.3 as the dominant Kv1 channel expressed in dedifferentiated cells. We demonstrated that the inhibition of Kv1.3 channel function with selective blockers or by preventing Kv1.5 downregulation can represent an effective, novel strategy for the prevention of intimal hyperplasia and restenosis of the human vessels used for coronary angioplasty procedures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy