SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Morsali Mohammad 1992 ) "

Sökning: WFRF:(Morsali Mohammad 1992 )

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Morsali, Mohammad, 1992- (författare)
  • Site-specific reactions of softwood kraft lignin for biobased vitrimers and reactive colloidal particles
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lignin, a natural polyphenolic compound of wood, holds promise as a green alternative to fossil resources given the current environmental concerns. However, its complex structure and limited usability have impeded widespread use of lignin in biobased materials. This thesis is focused on employing a series of chemistries and techniques that facilitate lignin utilization in a variety of applications ranging from bulk materials to colloidal particles. Lignin-based vitrimers, developed by a one pot, catalyst-free click addition of poly(ethylene glycol) divinyl ether to softwood kraft lignin and formation of dynamic acetal exchange network showed excellent performance as recoverable adhesives, reaching lab shear strengths of 2.6 MPa and 6.0 MPa for wood and aluminum substrates, respectively. Stabilized lignin nanoparticles synthesized by hydrothermal crosslinking of hydroxymethylated lignin nanoparticles showed an excellent colloidal stability in organic solvents such as ethanol, acetone, dimethylformamide, and tetrahydrofuran, and aqueous media (3 < pH < 12). These stabilized lignin nanoparticles were subjected to direct surface modification in colloidal state to develop aminated pH-responsive particles. Stabilized lignin nanoparticles, preserving redox activity, showed a capacity in reducing silver ions, forming hybrid lignin-silver nanoparticles for applications such as hydrogen peroxide colloidal sensors. Interaction of silver ions and stabilized lignin nanoparticles contributed to the emergence of discrete patterns of silver in lignin nanoparticle embedded hydrogels. The location and distance of the discrete patterns can be modified by altering the particle size and concentration. Furthermore, redox activity of stabilized lignin nanoparticles, hydroxymethylated lignin nanoparticles and unmodified lignin nanoparticles with different particle sizes (90 nm, 150 nm, 640 nm) were studied in charge storage applications in organic poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrodes. Non-modified lignin nanoparticles with the diameter of 150 nm showed the best performance overall, with specific capacities of the electrode reaching 42.5 mAh/g at a current density of 1 A/g. These particles were also demonstrated in a Zinc-lignin battery prototype. To further explore and broaden the horizon of lignin applications, propargylated lignin nanoparticles demonstrated light-induced “click” reactions initiated thermally or by Cu (I) or energy-efficient light emitting diodes with 405 nm wavelength. These nanoparticles were further employed to demonstrate the light-triggered reactions with betulin azide in Pickering emulsions, showcasing the versatility of colloidal chemistry of lignin and opportunities for new applications.
  •  
4.
  •  
5.
  • Rossato, Letizia Anna Maria, et al. (författare)
  • Phospholipase D Immobilization on Lignin Nanoparticles for Enzymatic Transformation of Phospholipids
  • 2024
  • Ingår i: ChemSusChem. - 1864-5631 .- 1864-564X. ; 17:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignin nanoparticles (LNPs) are promising components for various materials, given their controllable particle size and spherical shape. However, their origin from supramolecular aggregation has limited the applicability of LNPs as recoverable templates for immobilization of enzymes. In this study, we show that stabilized LNPs are highly promising for the immobilization of phospholipase D (PLD), the enzyme involved in the biocatalytic production of high-value polar head modified phospholipids of commercial interest, phosphatidylglycerol, phosphatidylserine and phosphatidylethanolamine. Starting from hydroxymethylated lignin, LNPs were prepared and successively hydrothermally treated to obtain c-HLNPs with high resistance to organic solvents and a wide range of pH values, covering the conditions for enzymatic reactions and enzyme recovery. The immobilization of PLD on c-HLNPs (PLD-c-HLNPs) was achieved through direct adsorption. We then successfully exploited this new enzymatic preparation in the preparation of pure polar head modified phospholipids with high yields (60–90 %). Furthermore, the high stability of PLD-c-HLNPs allows recycling for a number of reactions with appreciable maintenance of its catalytic activity. Thus, PLD-c-HLNPs can be regarded as a new, chemically stable, recyclable and user-friendly biocatalyst, based on a biobased inexpensive scaffold, to be employed in sustainable chemical processes for synthesis of value-added phospholipids.
  •  
6.
  • Thalakkale Veettil, Unnimaya, 1998-, et al. (författare)
  • Mechanically recyclable melt-spun fibers from lignin esters and iron oxide nanoparticles : towards circular lignin materials
  • 2023
  • Ingår i: Green Chemistry. - 1463-9262 .- 1463-9270. ; 25:24, s. 10424-10435
  • Tidskriftsartikel (refereegranskat)abstract
    • The inferior thermoplastic properties have limited production of melt-spun fibers from lignin. Here we report on the controlled esterification of softwood kraft lignin (SKL) to enable scalable, solvent-free melt spinning of microfibers using a cotton candy machine. We found that it is crucial to control the esterification process as melt-spun fibers could be produced from lignin oleate and lignin stearate precursors with degrees of esterification (DE) ranging from 20-50%, but not outside this range. To fabricate a functional hybrid material, we incorporated magnetite nanoparticles (MNPs) into the lignin oleate fibers by melt blending and subsequent melt spinning. Thermogravimetric analysis and X-ray diffraction studies revealed that increasing the weight fraction of MNPs led to improved thermal stability of the fibers. Finally, we demonstrated adsorption of organic dyes, magnetic recovery, and recycling via melt spinning of the regular and magnetic fibers with 95% and 83% retention of the respective adsorption capacities over three adsorption cycles. The mechanical recyclability of the microfibers represents a new paradigm in lignin-based circular materials.
  •  
7.
  •  
8.
  • Yao, Jenevieve G., et al. (författare)
  • Lignin nanoparticle-enhanced biobased resins for digital light processing 3D printing : Towards high resolution and tunable mechanical properties
  • 2023
  • Ingår i: European Polymer Journal. - : Elsevier BV. - 0014-3057 .- 1873-1945. ; 194
  • Tidskriftsartikel (refereegranskat)abstract
    • The more widespread applicability of photopolymerization-based three-dimensional (3D) printing is limited by the availability of light-curable resins, most of which are based on fossil-derived compounds. We developed a biobased lignin-derivable resin by utilizing methacrylated derivatives of vanillin, vanillyl alcohol, and eugenol as aromatic monomers. Lignin nanoparticles (LNPs) were incorporated as functional fillers that enhance print resolution and material properties. The crosslinking degree, and thereby the tensile properties, was modulated through the use of mono- or dimethacrylated vanillin derivatives in the resin formulation. The LNPs acted as UV absorbers, conferring better control of the photopolymerization process by preventing light penetration across unintended layers, leading to enhanced print resolution. The LNPs showed excellent dispersion stability due to their size and morphology. The inclusion of up to 2 wt% of LNPs improved the ductility of the 3D printed nanocomposites through toughening mechanisms enabled by the rigid nanoparticles. Finally, exploiting the differences in crosslinking degree of the resin formulations, a multi-material model featuring both soft and rigid domains was fabricated. This study demonstrates a simple but effective strategy for the design of biobased photocurable resins with tailorable mechanical properties that are suitable for high-resolution and multi-material 3D printing. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy