SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mortin Jonas 1981 ) "

Sökning: WFRF:(Mortin Jonas 1981 )

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mortin, Jonas, 1981-, et al. (författare)
  • Evaluation of pan-Arctic melt-freeze onset in CMIP5 climate models and reanalyses using surface observations
  • 2014
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 42:7-8, s. 2239-2257
  • Tidskriftsartikel (refereegranskat)abstract
    • The seasonal melt-freeze transitions are fun- damental features of the Arctic climate system. The representation of the pan-Arctic melt and freeze onset (north of 60°N) is assessed in two reanalyses and eleven CMIP5 global circulation models (GCMs). The seasonal melt-freeze transitions are retrieved from surface air temperature (SAT) across the land and sea-ice domains and evaluated against surface observations. While monthly averages of SAT are reasonably well represented in models, large model-observation and model–model disparities of timing of melt and freeze onset are evident. The evaluation against surface observations reveals that the ERA-Interim reanalysis performs the best, closely followed by some of the climate models. GCMs and reanalyses capture the seasonal melt-freeze transitions better in the central Arctic than in the marginal seas and across the land areas. The GCMs project that during the 21st century, the summer length—the period between melt and freeze onset—will increase over land by about 1 month at all latitudes, and over sea ice by 1 and 3 months at low and high latitudes, respectively. This larger summer-length increase over sea ice at pro- gressively higher latitudes is related to a retreat of summer sea ice during the 21st century, since open water freezes roughly 40 days later than ice-covered ocean. As a consequence, by the year 2100, the freeze onset is projected to be initiated within roughly 10 days across the whole Arctic Ocean, whereas this transition varies by about 80 days today.
  •  
2.
  • Mortin, Jonas, 1981-, et al. (författare)
  • Extending the QuikSCAT record of seasonal melt–freeze transitions over Arctic sea ice using ASCAT
  • 2014
  • Ingår i: Remote Sensing of Environment. - : Elsevier BV. - 0034-4257 .- 1879-0704. ; 141:5, s. 214-230
  • Tidskriftsartikel (refereegranskat)abstract
    • The seasonal melt–freeze transitions are important to continuously monitor over Arctic sea ice in order to better understand Arctic climate variability. The Ku-band scatterometer QuikSCAT (13.4 GHz), widely used to retrieve pan-Arctic seasonal transitions, discontinued its decadal long record in 2009. In this study, we show that the C-band scatterometer ASCAT (5.3 GHz), in orbit since 2006 and with an anticipated lifetime through 2021, can be used to extend the QuikSCAT record of seasonal melt–freeze transitions. This is done by (1) comparing back- scatter measurements over multiyear and first-year ice, and by (2) retrieving seasonal transitions from resolution-enhanced ASCAT and QuikSCAT measurements and comparing the results with independent datasets. Despite operating in different frequencies, ASCAT and QuikSCAT respond similarly to surface transitions. However, QuikSCAT measurements respond slightly stronger to the early melt of first-year ice, making it less sensitive to sea-ice dynamics. To retrieve the transitions, we employed an improved edge-detector algorithm, which was iterated and constrained using sea-ice concentration data, efficiently alleviating unreasonable outliers. This gives melt–freeze transitions over all Arctic sea ice north of 60°N at a 4.45 km resolution during 1999–2009 and 2009–2012 for QuikSCAT and ASCAT, respectively. Using the sensor overlap period, we show that the retrieved transitions retrieved from the different instruments are largely consistent across all regions in the Arctic sea-ice domain, indicating a robust consistency.
  •  
3.
  • Mortin, Jonas, 1981-, et al. (författare)
  • Mapping of seasonal freeze-thaw transitions across the pan-Arctic land and sea ice domains with satellite radar
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. C08004-
  • Tidskriftsartikel (refereegranskat)abstract
    • To monitor the pan-Arctic seasonal freeze-thaw transitions of the land surface and sea ice, we analyze daily backscatter data from satellite scatterometry to examine the time series on an annual basis by applying an optimal edge detection scheme, and iterate against an internal median climatology to mitigate unreasonable outliers. By applying this novel algorithm to resolution-enhanced QuikSCAT data from 1999 to 2009, we have mapped a decade of seasonal freeze-thaw transitions across the landmass and sea ice north of 60 degrees N at a spatial resolution better than 5 km. The data set has been validated against surface air temperature measurements and snow depth obtained from a distributed network of weather stations and drift buoys. Most retrieved timings from surface and QuikSCAT measurements agree to less than a week at thaw transition for both land and sea ice and at freeze transition for sea ice, indicating successful retrieval over a range of surface covers. While the spatial pattern of freeze-thaw transition changes substantially from year to year, the interannual variability of the mean transition timing over a particular surface is small.
  •  
4.
  • Mortin, Jonas, 1981- (författare)
  • On the Arctic Seasonal Cycle
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The seasonal cycle of snow and sea ice is a fundamental feature of the Arctic climate system. In the Northern Hemisphere, about 55 million km2 of sea ice and snow undergo complete melt and freeze processes every year. Because snow and sea ice are much brighter (higher albedo) than the underlying surface, their presence reduces absorption of incoming solar energy at high latitudes. Therefore, changes of the sea-ice and snow cover have a large impact on the Arctic climate and possibly at lower latitudes. One of the most important determining factors of the seasonal snow and sea-ice cover is the timing of the seasonal melt-freeze transitions. Hence, in order to better understand Arctic climate variability, it is key to continuously monitor these transitions.This thesis presents an algorithm for obtaining melt-freeze transitions using scatterometers over both the land and sea-ice domains. These satellite-borne instruments emit radiation at microwave wavelengths and measure the returned signal. Several scatterometers are employed: QuikSCAT (1999–2009), ASCAT (2009–present), and OSCAT (2009–present). QuikSCAT and OSCAT operate at Ku-band (λ=2.2 cm) and ASCAT at C-band (λ=5.7 cm), resulting in slightly different surface interactions. This thesis discusses these dissimilarities over the Arctic sea-ice domain, and juxtaposes the time series of seasonal melt-freeze transitions from the three scatterometers and compares them with other, independent datasets.The interactions of snow and sea ice with other components of the Arctic climate system are complex. Models are commonly employed to disentangle these interactions. But this hinges upon robust and well-formulated models, reached by perpetual testing against observations. This thesis also presents an evaluation of how well eleven state-of-the-art global climate models reproduce the Arctic sea-ice cover and the summer length—given by the melt-freeze transitions—using surface observations of air temperature.
  •  
5.
  • Mortin, Jonas, 1981-, et al. (författare)
  • OSCAT as a successor to QuikSCAT : a comparison over Arctic sea ice with emphasis on the seasonal melt-freeze transitions
  • Ingår i: Annals of Glaciology. - 0260-3055 .- 1727-5644.
  • Tidskriftsartikel (refereegranskat)abstract
    • It is important to continuously monitor the seasonal melt-freeze transitions because of their influence on the Arctic climate system. The Ku-band scatterometer QuikSCAT was widely used to retrieve the seasonal transitions before its antenna failed in November 2009. In this study, we show that OSCAT, a Ku-band scatterometer launched in September 2009, can serve as a successor to QuikSCAT over Arctic sea ice. This is done by (1) comparing backscatter measurements acquired in overlapping time periods, and by (2) retrieving the seasonal melt-freeze transitions over Arctic sea ice from resolution-enhanced QuikSCAT and OSCAT data and comparing the results, also with other datasets. The main difference between the instruments, in terms of backscatter measurements, is the incidence angle in which backscatter is acquired, which yields backscatter discrepancies of 1-2 dB. This discrepancy is significantly smaller than the response of both sensors to surface melting and freezing processes. An edge-detection algorithm is employed that retrieves seasonal transitions from QuikSCAT (1999-2009) and OSCAT (2011-2013) at a 4.45-km spatial resolution. A comparison with transitions retrieved from the C-band scatterometer ASCAT (2009-2013) and from passive microwave radiometers (1999-2013) indicates that the transitions from scatterometers are largely consistent across all regions in the Arctic sea-ice domain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy