SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mortusewicz Oliver) "

Sökning: WFRF:(Mortusewicz Oliver)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Herr, Patrick, et al. (författare)
  • A genome-wide IR-induced RAD51 foci RNAi screen identifies CDC73 involved in chromatin remodeling for DNA repair
  • 2015
  • Ingår i: Cell discovery. - : Springer Science and Business Media LLC. - 2056-5968. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify new regulators of homologous recombination repair, we carried out a genome-wide short-interfering RNA screen combined with ionizing irradiation using RAD51 foci formation as readout. All candidates were confirmed by independent short-interfering RNAs and validated in secondary assays like recombination repair activity and RPA foci formation. Network analysis of the top modifiers identified gene clusters involved in recombination repair as well as components of the ribosome, the proteasome and the spliceosome, which are known to be required for effective DNA repair. We identified and characterized the RNA polymerase II-associated protein CDC73/Parafibromin as a new player in recombination repair and show that it is critical for genomic stability. CDC73 interacts with components of the SCF/Cullin and INO80/NuA4 chromatin-remodeling complexes to promote Histone ubiquitination. Our findings indicate that CDC73 is involved in local chromatin decondensation at sites of DNA damage to promote DNA repair. This function of CDC73 is related to but independent of its role in transcriptional elongation.
  •  
2.
  • Green, Alanna C., et al. (författare)
  • Formate overflow drives toxic folate trapping in MTHFD1 inhibited cancer cells
  • 2023
  • Ingår i: Nature Metabolism. - : Springer Nature. - 2522-5812. ; 5:4, s. 642-659
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer cells fuel their increased need for nucleotide supply by upregulating one-carbon (1C) metabolism, including the enzymes methylenetetrahydrofolate dehydrogenase–cyclohydrolase 1 and 2 (MTHFD1 and MTHFD2). TH9619 is a potent inhibitor of dehydrogenase and cyclohydrolase activities in both MTHFD1 and MTHFD2, and selectively kills cancer cells. Here, we reveal that, in cells, TH9619 targets nuclear MTHFD2 but does not inhibit mitochondrial MTHFD2. Hence, overflow of formate from mitochondria continues in the presence of TH9619. TH9619 inhibits the activity of MTHFD1 occurring downstream of mitochondrial formate release, leading to the accumulation of 10-formyl-tetrahydrofolate, which we term a ‘folate trap’. This results in thymidylate depletion and death of MTHFD2-expressing cancer cells. This previously uncharacterized folate trapping mechanism is exacerbated by physiological hypoxanthine levels that block the de novo purine synthesis pathway, and additionally prevent 10-formyl-tetrahydrofolate consumption for purine synthesis. The folate trapping mechanism described here for TH9619 differs from other MTHFD1/2 inhibitors and antifolates. Thus, our findings uncover an approach to attack cancer and reveal a regulatory mechanism in 1C metabolism.
  •  
3.
  • Luttens, Andreas, et al. (författare)
  • Virtual Fragment Screening for DNA Repair Inhibitors in Vast Chemical Space
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Fragment-based screening can catalyze drug discovery by identifying novel scaffolds, but this approach is limited by the small chemical libraries studied by biophysical experiments and the challenging hit optimization step. In efforts to identify DNA repair inhibitors, we explored the use of structure-based virtual screening to access ultralarge fragment libraries that cover four orders of magnitude larger fractions of chemical space than traditional techniques. A set of 14 million fragments were docked to 8-oxoguanine DNA glycosylase (OGG1), a challenging drug target involved in cancer and inflammation. Of the 29 top-ranked fragments that were experimentally evaluated, four compounds were shown to bind to OGG1 and X-ray crystallography confirmed the predicted binding modes. Docking of readily synthesizable elaborations guided fragment optimization, leading to the discovery of submicromolar OGG1 inhibitors with anti-inflammatory and anti-cancer effects in cell models. Our results demonstrate that fragment-based virtual screening enables efficient exploration of vast chemical libraries.
  •  
4.
  • Ström, Cecilia E., et al. (författare)
  • CK2 phosphorylation of XRCC1 facilitates dissociation from DNA and single-strand break formation during base excision repair
  • 2011
  • Ingår i: DNA Repair. - : Elsevier BV. - 1568-7864 .- 1568-7856. ; 10:9, s. 961-969
  • Tidskriftsartikel (refereegranskat)abstract
    • CK2 phosphorylates the scaffold protein XRCC1, which is required for efficient DNA single-strand break (SSB) repair. Here, we express an XRCC1 protein (XRCC1(ckm)) that cannot be phosphorylated by CK2 in XRCC1 mutated EM9 cells and show that the role of this post-translational modification gives distinct phenotypes in SSB repair and base excision repair (BER). Interestingly, we find that fewer SSBs are formed during BER after treatment with the allcylating agent dimethyl sulfate (DMS) in EM9 cells expressing XRCC1(ckm) (CKM cells) or following inhibition with the CK2 inhibitor 2-dimethylamino-4,5,6,7tetrabromo-1H-benzimidazole (DMAT). We also show that XRCC1(ckm) protein has a higher affinity for DNA than wild type XRCC1 protein and resides in an immobile fraction on DNA, in particular after damage. We propose a model whereby the increased affinity for DNA sequesters XRCC1(ckm) and the repair enzymes associated with it, at the repair site, which retards kinetics of BER. In conclusion, our results indicate that phosphorylation of XRCC1 by CK2 facilitates the BER incision step, likely by promoting.
  •  
5.
  • Visnes, Torkild, et al. (författare)
  • Small-molecule inhibitor of OGG1 suppresses proinflammatory gene expression and inflammation
  • 2018
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 362:6416, s. 834-
  • Tidskriftsartikel (refereegranskat)abstract
    • The onset of inflammation is associated with reactive oxygen species and oxidative damage to macromolecules like 7,8-dihydro-8-oxoguanine (8-oxoG) in DNA. Because 8-oxoguanine DNA glycosylase 1 (OGG1) binds 8-oxoG and because Ogg1-deficient mice are resistant to acute and systemic inflammation, we hypothesized that OGG1 inhibition may represent a strategy for the prevention and treatment of inflammation. We developed TH5487, a selective active-site inhibitor of OGG1, which hampers OGG1 binding to and repair of 8-oxoG and which is well tolerated by mice. TH5487 prevents tumor necrosis factor-alpha-induced OGG1-DNA interactions at guanine-rich promoters of proinflammatory genes. This, in turn, decreases DNA occupancy of nuclear factor kappa B and proinflammatory gene expression, resulting in decreased immune cell recruitment to mouse lungs. Thus, we present a proof of concept that targeting oxidative DNA repair can alleviate inflammatory conditions in vivo.
  •  
6.
  • Visnes, Torkild, et al. (författare)
  • Targeting OGG1 arrests cancer cell proliferation by inducing replication stress
  • 2020
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 48:21, s. 12234-12251
  • Tidskriftsartikel (refereegranskat)abstract
    • Altered oncogene expression in cancer cells causes loss of redox homeostasis resulting in oxidative DNA damage, e.g. 8-oxoguanine (8-oxoG), repaired by base excision repair (BER). PARP1 coordinates BER and relies on the upstream 8-oxoguanine-DNA glycosylase (OGG1) to recognise and excise 8-oxoG. Here we hypothesize that OGG1 may represent an attractive target to exploit reactive oxygen species (ROS) elevation in cancer. Although OGG1 depletion is well tolerated in non-transformed cells, we report here that OGG1 depletion obstructs A3 T-cell lymphoblastic acute leukemia growth in vitro and in vivo, validating OGG1 as a potential anti-cancer target. In line with this hypothesis, we show that OGG1 inhibitors (OGG1i) target a wide range of cancer cells, with a favourable therapeutic index compared to non-transformed cells. Mechanistically, OGG1i and shRNA depletion cause S-phase DNA damage, replication stress and proliferation arrest or cell death, representing a novel mechanistic approach to target cancer. This study adds OGG1 to the list of BER factors, e.g. PARP1, as potential targets for cancer treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (5)
annan publikation (1)
Typ av innehåll
refereegranskat (5)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Helleday, Thomas (6)
Wiita, Elisee (4)
Loseva, Olga (3)
Stenmark, Pål (3)
Scobie, Martin (3)
Jemth, Ann-Sofie (3)
visa fler...
Altun, Mikael (2)
Krokan, Hans E (2)
Karsten, Stella (2)
Pham, Therese (2)
Sarno, Antonio (2)
Rasti, Azita (2)
Sanjiv, Kumar (2)
Henriksson, Martin (1)
Johansson, Fredrik (1)
Kihlberg, Jan (1)
Sonnhammer, Erik (1)
Zubarev, Roman A (1)
Benitez, Javier (1)
Artursson, Per (1)
Jenmalm Jensen, Anni ... (1)
Lundin, Cecilia (1)
Schultz, Niklas (1)
Frings, Oliver (1)
Carlsson, Jens (1)
El-Andaloussi, Samir (1)
Bekkhus, Tove (1)
Astorga-Wells, Juan (1)
Boström, Johan (1)
Gad, Helge (1)
Erixon, Klaus (1)
Ballante, Flavio (1)
Luttens, Andreas (1)
Muller, Sarah (1)
Bauerschmidt, Christ ... (1)
Rajagopal, Varshni (1)
Sörensen, Claus Stor ... (1)
Berglund, Ulrika (1)
Vallin, Karl (1)
Baranczewski, Pawel (1)
Göktürk, Camilla (1)
Bonagas, Nadilly (1)
Marttila, Petra (1)
Borhade, Sanjay (1)
Green, Alanna C. (1)
Gokturk, Camilla (1)
Cookson, Victoria (1)
Kiweler, Nicole (1)
Sandberg, Lars (1)
Iliev, Petar (1)
visa färre...
Lärosäte
Stockholms universitet (5)
Karolinska Institutet (4)
Uppsala universitet (2)
Lunds universitet (2)
Umeå universitet (1)
RISE (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5)
Medicin och hälsovetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy