SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mosbech Mai Britt) "

Sökning: WFRF:(Mosbech Mai Britt)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lysenkova Wiklander, Mariya, et al. (författare)
  • Genomic, transcriptomic and epigenomic sequencing data of the B-cell leukemia cell line REH
  • 2023
  • Ingår i: BMC Research Notes. - : BioMed Central (BMC). - 1756-0500. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectivesThe aim of this data paper is to describe a collection of 33 genomic, transcriptomic and epigenomic sequencing datasets of the B-cell acute lymphoblastic leukemia (ALL) cell line REH. REH is one of the most frequently used cell lines for functional studies of pediatric ALL, and these data provide a multi-faceted characterization of its molecular features. The datasets described herein, generated with short- and long-read sequencing technologies, can both provide insights into the complex aberrant karyotype of REH, and be used as reference datasets for sequencing data quality assessment or for methods development.Data descriptionThis paper describes 33 datasets corresponding to 867 gigabases of raw sequencing data generated from the REH cell line. These datasets include five different approaches for whole genome sequencing (WGS) on four sequencing platforms, two RNA sequencing (RNA-seq) techniques on two different sequencing platforms, DNA methylation sequencing, and single-cell ATAC-sequencing.
  •  
2.
  • Moskric, Ajda, et al. (författare)
  • The Carniolan Honeybee from Slovenia-A Complete and Annotated Mitochondrial Genome with Comparisons to Closely Related Apis mellifera Subspecies
  • 2022
  • Ingår i: Insects. - : MDPI AG. - 2075-4450. ; 13:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The complete mitochondrial genome of the Carniolan honeybee (Apis mellifera carnica) from Slovenia, a homeland of this subspecies, was acquired in two contigs from WGS data and annotated. The newly obtained mitochondrial genome is a circular closed loop of 16,447 bp. It comprises 37 genes (13 protein coding genes, 22 tRNA genes, and 2 rRNA genes) and an AT-rich control region. The order of the tRNA genes resembles the order characteristic of A. mellifera. The mitogenomic sequence of A. m. carnica from Slovenia contains 44 uniquely coded sites in comparison to the closely related subspecies A. m. ligustica and to A. m. carnica from Austria. Furthermore, 24 differences were recognised in comparison between A. m. carnica and A. m. ligustica subspecies. Among them, there are three SNPs that affect translation in the nd2, nd4, and cox2 genes, respectively. The phylogenetic placement of A. m. carnica from Slovenia within C lineage deviates from the expected position and changes the perspective on relationship between C and O lineages. The results of this study represent a valuable addition to the information available in the phylogenomic studies of A. mellifera-a pollinator species of worldwide importance. Such genomic information is essential for this local subspecies' conservation and preservation as well as its breeding and selection.
  •  
3.
  • Wallberg, Andreas, et al. (författare)
  • A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds
  • 2019
  • Ingår i: BMC Genomics. - : BMC. - 1471-2164. ; 20
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThe ability to generate long sequencing reads and access long-range linkage information is revolutionizing the quality and completeness of genome assemblies. Here we use a hybrid approach that combines data from four genome sequencing and mapping technologies to generate a new genome assembly of the honeybee Apis mellifera. We first generated contigs based on PacBio sequencing libraries, which were then merged with linked-read 10x Chromium data followed by scaffolding using a BioNano optical genome map and a Hi-C chromatin interaction map, complemented by a genetic linkage map.ResultsEach of the assembly steps reduced the number of gaps and incorporated a substantial amount of additional sequence into scaffolds. The new assembly (Amel_HAv3) is significantly more contiguous and complete than the previous one (Amel_4.5), based mainly on Sanger sequencing reads. N50 of contigs is 120-fold higher (5.381 Mbp compared to 0.053 Mbp) and we anchor >98% of the sequence to chromosomes. All of the 16 chromosomes are represented as single scaffolds with an average of three sequence gaps per chromosome. The improvements are largely due to the inclusion of repetitive sequence that was unplaced in previous assemblies. In particular, our assembly is highly contiguous across centromeres and telomeres and includes hundreds of AvaI and AluI repeats associated with these features.ConclusionsThe improved assembly will be of utility for refining gene models, studying genome function, mapping functional genetic variation, identification of structural variants, and comparative genomics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy