SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moverare Johan 1973 ) "

Sökning: WFRF:(Moverare Johan 1973 )

  • Resultat 1-10 av 106
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Balachandramurthi, Arun Ramanathan, 1989-, et al. (författare)
  • Microstructure tailoring in Electron Beam Powder Bed Fusion Additive Manufacturing and its potential consequences
  • 2019
  • Ingår i: Results in Materials. - : Elsevier. - 2590-048X. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron Beam Powder Bed Fusion process for Alloy 718 was investigated, in the sense of microstructural evolution with varying process conditions. The existence of a geometric relationship between the melt front and the processing parameters was observed. By understanding and capitalizing on this relationship, it was possible to obtain columnar, equiaxed or bimodal microstructure.
  •  
2.
  • Balachandramurthi, Arun Ramanathan, 1989- (författare)
  • Towards understanding the fatigue behaviour of Alloy 718 manufactured by Powder Bed Fusion processes
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Additive Manufacturing (AM) is a disruptive modern manufacturing process in which parts are manufactured in a layer-wise fashion. Among the metal AM processes, Powder Bed Fusion (PBF) technology — comprised of Electron Beam Powder Bed Fusion (EB-PBF) and Laser Beam Powder Bed Fusion (LB-PBF) —has opened up a design space that was formerly unavailable with conventionalmanufacturing processes. PBF processes offer several advantages; however, thesuitability of these processes to replace the conventional processes must be investigatedin detail. Therefore, understanding the AM process – post-processing –microstructure – property relationships is crucial for the manufacturing of high performance components. In this regard, only limited work has been done towards understanding the fatigue behaviour of PBF Alloy 718. The aim of this work, therefore, is to understand how the fatigue behaviour of PBF Alloy 718 is affected by its microstructure. Besides, the influence of the rough as-built surface is also investigated. In general, the <100> fibre texture along the build direction that resulted from PBF processing of Alloy 718 led to anisotropy in Young's modulus. Consequently,the fatigue performance under controlled amplitudes of strain was anisotropic such that the low-modulus direction had longer fatigue life and vice versa. This texture-induced elasticity-dependent anisotropic strain-life behaviour couldbe normalized by the pseudo-elastic stress vs fatigue life approach.Inclusions and defects had a detrimental effect on fatigue performance. Numerousfactors, such as their geometry, volume fraction, and distribution, determinedthe effect on fatigue behaviour. Hot Isostatic Pressing (HIP) eliminated most defect sand led to an improvement in fatigue performance. However, HIP did not alter the inclusions, which acted as crack initiation sites and reduced fatigue life. The rough as-built surface, which had numerous notch-like crack initiation sites, deteriorated fatigue performance; however, it lowered the scatter in fatigue life. Machining off the as-built surface improved fatigue life but increased the scatter.
  •  
3.
  • Wärner, Hugo, 1988- (författare)
  • High-Temperature Fatigue Behaviour of Austenitic Stainless Steel : Influence of Ageing on Thermomechanical Fatigue and Creep-Fatigue Interaction
  • 2018
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The global energy consumption is increasing and together with global warming from greenhouse gas emission, create the need for more environmental friendly energy production processes. Higher efficiency of biomass power plants can be achieved by increasing temperature and pressure in the boiler section and this would increase the generation of electricity along with the reduction in emission of greenhouse gases e.g. CO2. The power generation must also be flexible to be able to follow the demands of the energy market, this results in a need for cyclic operating conditions with alternating output and multiple start-ups and shut-downs.Because of the demands of flexibility, higher temperature and higher pressure in the boiler section of future biomass power plants, the demands on improved mechanical properties of the materials of these components are also increased. Properties like creep strength, thermomechanical fatigue resistance and high temperature corrosion resistance are critical for materials used in the next generation biomass power plants. Austenitic stainless steels are known to possess such good high temperature properties and are relatively cheap compared to the nickel-base alloys, which are already operating at high temperature cyclic conditions in other applications. The behaviour of austenitic stainless steels during these widened operating conditions are not yet fully understood.The aim of this licentiate thesis is to increase the knowledge of the mechanical behaviour at high temperature cyclic conditions for austenitic stainless steels. This is done by the use of thermomechanical fatigue- and creepfatigue testing at elevated temperatures. For safety reasons, the effect of prolonged service degradation is investigated by pre-ageing before mechanical testing. Microscopy is used to investigate the microstructural development and resulting damage behaviour of the austenitic stainless steels after testing. The results show that creep-fatigue interaction damage, creep damage and oxidation assisted cracking are present at high temperature cyclic conditions. In addition, simulated service degradation resulted in a detrimental embrittling effect due to the deterioration by the microstructural evolution.
  •  
4.
  •  
5.
  • Azeez, Ahmed, 1991-, et al. (författare)
  • Out-of-phase thermomechanical fatigue crack propagation in a steam turbine steel — modelling of crack closure
  • 2021
  • Ingår i: International Journal of Fatigue. - : Elsevier. - 0142-1123 .- 1879-3452. ; 149
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding of crack growth behaviour is necessary to predict accurate fatigue lives. Out-of-phase thermomechanical fatigue crack propagation tests were performed on FB2 steel used in high-temperature steam turbine sections. Testing results showed crack closure where the compressive part of the fatigue cycle affected crack growth rate. Crack closing stress was observed to be different, and had more influence on the growth rate, than crack opening stress. Crack growth rate was largely controlled by the minimum temperature of the cycle, which agreed with an isothermal crack propagation test. Finite element models with stationary sharp cracks captured the crack closure behaviour.
  •  
6.
  • Azeez, Ahmed, 1991-, et al. (författare)
  • The effect of dwell times and minimum temperature on out-of-phase thermomechanical fatigue crack propagation in a steam turbine steel - Crack closure prediction
  • 2022
  • Ingår i: International Journal of Fatigue. - : Elsevier Science Ltd. - 0142-1123 .- 1879-3452. ; 162
  • Tidskriftsartikel (refereegranskat)abstract
    • Exploring crack growth behaviour is needed to establish accurate fatigue life predictions. Cracked specimens were tested under strain-controlled out-of-phase thermomechanical fatigue conditions. The tests included dwell times and three different minimum temperatures. Higher minimum temperature gave faster crack growth rates while the additions of dwell times showed no effects. Crack closure was observed in all the tests where the addition of dwell times and change in minimum temperature displayed little to no effect on crack closure stresses. Finite element models with a sharp stationary crack and material parameters switching provided acceptable predictions for the maximum, minimum, and crack closure stresses.
  •  
7.
  • Balachandramurthi, Arun Ramanathan, 1989-, et al. (författare)
  • Anisotropic fatigue properties of Alloy 718 manufactured by Electron Beam Powder Bed Fusion
  • 2020
  • Ingår i: International Journal of Fatigue. - : Elsevier. - 0142-1123 .- 1879-3452. ; 141
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, Alloy 718 specimens manufactured by Electron Beam Powder Bed Fusion process are subjected to two different post-treatments to have different microstructural features. Low cycle fatigue testing has been performed both parallel and transverse to the build direction. EB-PBF Alloy 718 exhibits anisotropic fatigue behaviour; the fatigue life is better along the parallel direction compared to the transverse direction. The anisotropy in fatigue life is related to the anisotropy in the Young’s modulus. The pseudo-elastic stress vs. fatigue life approach is presented as a potential solution to handle anisotropy in fatigue life assessment of additively manufactured engineering components. © 2020 The Authors
  •  
8.
  • Balachandramurthi, Arun Ramanathan (författare)
  • Fatigue Properties of Additively Manufactured Alloy 718
  • 2018
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Additive Manufacturing (AM), commonly known as 3D Printing, is a disruptive modern manufacturing process, in which parts are manufactured in a layer-wise fashion. Among the metal AM processes, Powder Bed Fusion (PBF) technology has opened up a design space that was not formerly accessible with conventional manufacturing processes. It is, now, possible to manufacture complex geometries, such as topology-optimized structures, lattice structures and intricate internal channels, with relative ease. PBF is comprised of Electron Beam Melting (EBM) and Selective Laser Melting (SLM) processes.Though AM processes offer several advantages, the suitability of these processes to replace conventional manufacturing processes must be studied in detail; for instance, the capability to produce components of consistent quality. Therefore, understanding the relationship between the AM process together with the post treatment used and the resulting microstructure and its influence on the mechanical properties is crucial, to enable manufacturing of high-performance components. In this regard, for AM built Alloy 718, only a limited amount of work has been performed compared to conventional processes such as casting and forging. The aim of this work, therefore, is to understand how the fatigue properties of EBM and SLM built Alloy 718, subjected to different thermal post-treatments, is affected by the microstructure. In addition, the effect of as-built surface roughness is also studied.Defects can have a detrimental effect on fatigue life. Numerous factors such as the defect type, size, shape, location, distribution and nature determine the effect of defects on properties. Hot Isostatic Pressing (HIP) improves fatigue life as it leads to closure of most defects. Presence of oxides in the defects, however, hinders complete closure by HIP. Machining the as-built surface improves fatiguelife; however, for EBM manufactured material, the extent of improvement is dependent on the amount of material removed. The as-built surface roughness, which has numerous crack initiation sites, leads to lower scatter in fatigue life. In both SLM and EBM manufactured material, fatigue crack propagation is transgranular. Crack propagation is affected by grain size and texture of the material.
  •  
9.
  • Balachandramurthi, Arun Ramanathan, et al. (författare)
  • Influence of defects and as-built surface roughness on fatigue properties of additively manufactured Alloy 718
  • 2018
  • Ingår i: Materials Science & Engineering. - : Elsevier BV. - 0921-5093 .- 1873-4936. ; 735, s. 463-474
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron beam melting (EBM) and Selective Laser Melting (SLM) are powder bed based additive manufacturing (AM) processes. These, relatively new, processes offer advantages such as near net shaping, manufacturing complex geometries with a design space that was previously not accessible with conventional manufacturing processes, part consolidation to reduce number of assemblies, shorter time to market etc. The aerospace and gas turbine industries have shown interest in the EBM and the SLM processes to enable topology-optimized designs, parts with lattice structures and part consolidation. However, to realize such advantages, factors affecting the mechanical properties must be well understood – especially the fatigue properties. In the context of fatigue performance, apart from the effect of different phases in the material, the effect of defects in terms of both the amount and distribution and the effect of “rough” as-built surface must be studied in detail. Fatigue properties of Alloy 718, a Ni-Fe based superalloy widely used in the aerospace engines is investigated in this study. Four point bending fatigue tests have been performed at 20 Hz in room temperature at different stress ranges to compare the performance of the EBM and the SLM material to the wrought material. The experiment aims to assess the differences in fatigue properties between the two powder bed AM processes as well as assess the effect of two post-treatment methods namely – machining and hot isostatic pressing (HIP). Fractography and metallography have been performed to explain the observed properties. Both HIPing and machining improve the fatigue performance; however, a large scatter is observed for machined specimens. Fatigue properties of SLM material approach that of wrought material while in EBM material defects severely affect the fatigue life. © 2018 Elsevier B.V.
  •  
10.
  • Balachandramurthi, Arun Ramanathan, 1989-, et al. (författare)
  • Microstructural influence on fatigue crack propagation during high cycle fatigue testing of additively manufactured Alloy 718
  • 2019
  • Ingår i: Materials Characterization. - : Elsevier BV. - 1044-5803 .- 1873-4189. ; 149, s. 82-94
  • Tidskriftsartikel (refereegranskat)abstract
    • A study of the microstructure of additively manufactured Alloy 718 was performed in order to better understand the parameters that have an influence on the fatigue properties of the material. The specimens were manufactured using two powder bed fusion techniques – Electron Beam Melting (EBM) and Selective Laser Melting (SLM). Four point bending fatigue tests were performed at room temperature with a stress ratio of R = 0.1 and 20 Hz frequency, on material that was either in hot isostatically pressed (HIP) and solution treated and aged (STA) condition or in STA condition without a prior HIP treatment. The grains in the SLM material in the HIP + STA condition have grown considerably both in the hatch and the contour regions; EBM material, in contrast, shows grain growth only in the contour region. Fractographic analysis of the specimens in HIP + STA condition showed a faceted appearance while the specimens in STA condition showed a more planar crack appearance. The crack propagation occurred in a transgranular mode and it was found that precipitatessuch as NbC, TiN or δ-phase, when present, did not affect the crack path. The areas with larger grains corresponded to the faceted appearance of the fracture surface. This could be attributed to the plastic zone ahead of the crack tip being confined within one grain, in case of the larger grains, which promotes single shear crack growth mode
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 106
Typ av publikation
tidskriftsartikel (52)
konferensbidrag (26)
doktorsavhandling (14)
licentiatavhandling (12)
rapport (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (74)
övrigt vetenskapligt/konstnärligt (32)
Författare/redaktör
Moverare, Johan, 197 ... (68)
Moverare, Johan, Pro ... (28)
Peng, Ru Lin, 1960- (24)
Calmunger, Mattias, ... (14)
Chai, Guocai, 1956- (13)
Johansson, Sten, 194 ... (10)
visa fler...
Wärner, Hugo, 1988- (10)
Odén, Magnus, 1965- (9)
Pederson, Robert, 19 ... (8)
Norman, Viktor, 1988 ... (7)
Cui, Luqing (7)
Balachandramurthi, A ... (6)
Moverare, Johan (6)
Yu, Cheng-Han, 1992- (6)
Deng, Dunyong, 1989- (6)
Peng, Ru Lin, Profes ... (6)
Xu, Jinghao (4)
Li, Xin-Hai (4)
Eriksson, Robert, 19 ... (4)
Jiang, Shuang (4)
Sun, Xiaoyu (4)
Lundgren, Jan-Erik (4)
Mousavian, Reza Tahe ... (4)
Brodin, Håkan (3)
Hasselqvist, Magnus (3)
Simonsson, Kjell, Pr ... (3)
Leidermark, Daniel, ... (3)
Nylén, Per, 1960- (3)
Deng, Dunyong (3)
Skoglund, Peter, 196 ... (3)
Jiang, Fuqing (3)
Yang, Zhiqing (3)
Kumara, Chamara (2)
Zhou, Jinming (2)
Simonsson, Kjell, 19 ... (2)
Hryha, Eduard, 1980 (2)
Gustafsson, David, 1 ... (2)
Gustafsson, David (2)
Skoglund, Peter (2)
Azeez, Ahmed, 1991- (2)
Segersäll, Mikael, A ... (2)
Hansson, Thomas, 196 ... (2)
Balachandramurthi, A ... (2)
Dixit, Nikhil, 1993- (2)
Sato, Atsushi (2)
Söderberg, Hans (2)
Siriki, Raveendra (2)
Nordström, Joakim, 1 ... (2)
Chen, Zhe (2)
Xin, Tongzheng (2)
visa färre...
Lärosäte
Linköpings universitet (99)
Högskolan Väst (11)
Chalmers tekniska högskola (4)
Lunds universitet (2)
RISE (2)
Göteborgs universitet (1)
visa fler...
Uppsala universitet (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (106)
Forskningsämne (UKÄ/SCB)
Teknik (96)
Naturvetenskap (1)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy