SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Muccioli Giampiero) "

Sökning: WFRF:(Muccioli Giampiero)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baldanzi, Gianluca, et al. (författare)
  • Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT.
  • 2002
  • Ingår i: The Journal of cell biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 159:6, s. 1029-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Ghrelin is an acyl-peptide gastric hormone acting on the pituitary and hypothalamus to stimulate growth hormone (GH) release, adiposity, and appetite. Ghrelin endocrine activities are entirely dependent on its acylation and are mediated by GH secretagogue (GHS) receptor (GHSR)-1a, a G protein-coupled receptor mostly expressed in the pituitary and hypothalamus, previously identified as the receptor for a group of synthetic molecules featuring GH secretagogue (GHS) activity. Des-acyl ghrelin, which is far more abundant than ghrelin, does not bind GHSR-1a, is devoid of any endocrine activity, and its function is currently unknown. Ghrelin, which is expressed in heart, albeit at a much lower level than in the stomach, also exerts a cardio protective effect through an unknown mechanism, independent of GH release. Here we show that both ghrelin and des-acyl ghrelin inhibit apoptosis of primary adult and H9c2 cardiomyocytes and endothelial cells in vitro through activation of extracellular signal-regulated kinase-1/2 and Akt serine kinases. In addition, ghrelin and des-acyl ghrelin recognize common high affinity binding sites on H9c2 cardiomyocytes, which do not express GHSR-1a. Finally, both MK-0677 and hexarelin, a nonpeptidyl and a peptidyl synthetic GHS, respectively, recognize the common ghrelin and des-acyl ghrelin binding sites, inhibit cell death, and activate MAPK and Akt.These findings provide the first evidence that, independent of its acylation, ghrelin gene product may act as a survival factor directly on the cardiovascular system through binding to a novel, yet to be identified receptor, which is distinct from GHSR-1a.
  •  
2.
  • Granata, Riccarda, et al. (författare)
  • Acylated and unacylated ghrelin promote proliferation and inhibit apoptosis of pancreatic beta-cells and human islets: involvement of 3',5'-cyclic adenosine monophosphate/protein kinase A, extracellular signal-regulated kinase 1/2, and phosphatidyl inositol 3-Kinase/Akt signaling.
  • 2007
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 148:2, s. 512-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Among its pleiotropic actions, ghrelin modulates insulin secretion and glucose metabolism. Herein we investigated the role of ghrelin in pancreatic beta-cell proliferation and apoptosis induced by serum starvation or interferon (IFN)-gamma/TNF-alpha, whose synergism is a major cause for beta-cell destruction in type I diabetes. HIT-T15 beta-cells expressed ghrelin but not ghrelin receptor (GRLN-R), which binds acylated ghrelin (AG) only. However, both unacylated ghrelin (UAG) and AG recognized common high-affinity binding sites on these cells. Either AG or UAG stimulated cell proliferation through Galpha(s) protein and prevented serum starvation- and IFN-gamma/TNF-alpha-induced apoptosis. Antighrelin antibody enhanced apoptosis in either the presence or absence of serum but not cytokines. AG and UAG even up-regulated intracellular cAMP. Blockade of adenylyl cyclase/cAMP/protein kinase A signaling prevented the ghrelin cytoprotective effect. AG and UAG also activated phosphatidyl inositol 3-kinase (PI3K)/Akt and ERK1/2, whereas PI3K and MAPK inhibitors counteracted the ghrelin antiapoptotic effect. Furthermore, AG and UAG stimulated insulin secretion from HIT-T15 cells. In INS-1E beta-cells, which express GRLN-R, AG and UAG caused proliferation and protection against apoptosis through identical signaling pathways. Noteworthy, both peptides inhibited cytokine-induced NO increase in either HIT-T15 or INS-1E cells. Finally, they induced cell survival and protection against apoptosis in human islets of Langerhans. These expressed GRLN-R but showed also UAG and AG binding sites. Our data demonstrate that AG and UAG promote survival of both beta-cells and human islets. These effects are independent of GRLN-R, are likely mediated by AG/UAG binding sites, and involve cAMP/PKA, ERK1/2, and PI3K/Akt.
  •  
3.
  • Johansson, Inger, 1962, et al. (författare)
  • Proliferative and protective effects of growth hormone secretagogues on adult rat hippocampal progenitor cells.
  • 2008
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 149:5, s. 2191-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Progenitor cells in the subgranular zone of the hippocampus may be of significance for functional recovery after various injuries because they have a regenerative potential to form new neuronal cells. The hippocampus has been shown to express the GH secretagogue (GHS) receptor 1a, and recent studies suggest GHS to both promote neurogenesis and have neuroprotective effects. The aim of the present study was to investigate whether GHS could stimulate cellular proliferation and exert cell protective effects in adult rat hippocampal progenitor (AHP) cells. Both hexarelin and ghrelin stimulated increased incorporation of (3)H-thymidine, indicating an increased cell proliferation. Furthermore, hexarelin, but not ghrelin, showed protection against growth factor deprivation-induced apoptosis, as measured by annexin V binding and caspase-3 activity and also against necrosis, as measured by lactate dehydrogenase release. Hexarelin activated the MAPK and the phosphatidylinositol 3-kinase/Akt pathways, whereas ghrelin activated only the MAPK pathway. AHP cells did not express the GHS receptor 1a, but binding studies could show specific binding of both hexarelin and ghrelin, suggesting effects to be mediated by an alternative GHS receptor subtype. In conclusion, our results suggest a differential effect of hexarelin and ghrelin in AHP cells. We have demonstrated stimulation of (3)H-thymidine incorporation with both hexarelin and ghrelin. Hexarelin, but not ghrelin, also showed a significant inhibition of apoptosis and necrosis. These results suggest a novel cell protective and proliferative role for GHS in the central nervous system.
  •  
4.
  • Pettersson, Inger, 1962, et al. (författare)
  • Natural (ghrelin) and synthetic (hexarelin) GH secretagogues stimulate H9c2 cardiomyocyte cell proliferation.
  • 2002
  • Ingår i: The Journal of endocrinology. - 0022-0795. ; 175:1, s. 201-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent experimental data demonstrate cardiovascular effects of the GH secretagogues (GHSs) hexarelin and ghrelin, the proposed natural ligand for the GHS receptor. Moreover, specific cardiac binding sites for GHSs have been suggested. The aim of the present study was to investigate if the natural ligand ghrelin and synthetic GHS peptide hexarelin and analogues have direct effects on the cardiomyocyte cell line, H9c2. Hexarelin stimulated thymidine incorporation in a dose-dependent manner with significant responses at 3 micro M (147+/-3% of control, P<0.01) and elicited maximal effects at concentrations around 30 micro M. This activity was seen already after 12 h of incubation with a maximal effect after 18 h (176+/-9% of control, P<0.01). Ghrelin also had a significant stimulatory effect on thymidine incorporation (129+/-2% of control at 3 micro M and 18 h, P<0.05). The stimulatory effect on thymidine incorporation of hexarelin, Tyr-Ala-hexarelin, EP80317 and ghrelin was specific and no stimulatory effect was observed with the truncated GH-releasing peptide EP51389 or the non-peptidyl GHS MK-0677. In competitive binding studies, (125)I-labeled Tyr-Ala-hexarelin was used as radioligand and competition curves showed displacement with hexarelin, Tyr-Ala-hexarelin, EP80317 and ghrelin, whereas MK-0677 and EP51389 produced very little displacement at 1 micro M concentration, adding further support for an alternative subtype binding site in the heart compared with the pituitary. In conclusion, we have demonstrated a dose-dependent and specific stimulation of cardiomyocyte thymidine incorporation by natural and synthetic GHS analogues, suggesting increased cell proliferation and binding of GHS to H9c2 cardiomyocyte cell membranes. These findings support potential peripheral effects of GHS on the cardiovascular system independent of an increased GH secretion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy