SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mudring Anja Verena) "

Sökning: WFRF:(Mudring Anja Verena)

  • Resultat 1-10 av 122
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Abdelhamid, Hani Nasser, et al. (författare)
  • Luminescence properties of a family of lanthanide metal-organic frameworks
  • 2019
  • Ingår i: Microporous and Mesoporous Materials. - : Elsevier BV. - 1387-1811 .- 1873-3093. ; 279, s. 400-406
  • Tidskriftsartikel (refereegranskat)abstract
    • Two isostructural series of lanthanide metal-organic frameworks denoted as SUMOF-7II (Ln) and SUMOF-7IIB (Ln) (Ln = La, Ce, Pr, Nd, Sm, Eu, and Gd) were synthesized using4,4',4 ''-(pyridine-2,4,6-triyl)tris(benzoic acid) (H(3)L2) and a mixture of H(3)L2 and 4,4',4 ''-(benzene-1,3,5-triyl)tris(benzoic acid) (H3BTB) as linkers, respectively. Both series were characterized using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermal analysis (TGA), and photoluminescence spectroscopy. Photoluminescence measurements show that Eu-MOFs demonstrate a red emission while Pr- and Nd-MOFs display an emission in the near-infrared (NIR) range. On the other hand, La-, Ce-, Sm- and Gd-MOFs exhibit only a ligand-centered emission. The average luminescence lifetimes in the SUMOF-7IIB series are 1.3-1.4-fold longer than the corresponding ones in the SUMOF-7II series. SUMOF-7IIs show a good photo- and thermal stability. Altogether, the properties of SUMOF-7II and SUMOF-7IIB render them promising materials for applications including sensing, biosensing, and telecommunications.
  •  
3.
  • Adranno, Brando, et al. (författare)
  • Broadband white-light-emitting electrochemical cells
  • 2023
  • Ingår i: Advanced Photonics Research. - : John Wiley & Sons. - 2699-9293. ; 4:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging organic light-emitting devices, such as light-emitting electrochemical cells (LECs), offer a multitude of advantages but currently suffer from that most efficient phosphorescent emitters are based on expensive and rare metals. Herein, it is demonstrated that a rare metal-free salt, bis(benzyltriphenylphosphonium)tetrabromidomanganate(II) ([Ph3PBn]2[MnBr4]), can function as the phosphorescent emitter in an LEC, and that a careful device design results in the fact that such a rare metal-free phosphorescent LEC delivers broadband white emission with a high color rendering index (CRI) of 89. It is further shown that broadband emission is effectuated by an electric-field-driven structural transformation of the original green-light emitter structure into a red-emitting structure.
  •  
4.
  • Adranno, Brando, et al. (författare)
  • Enhanced stability and complex phase behaviour of organic-inorganic green-emitting ionic manganese halides
  • 2023
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry (RSC). - 1477-9226 .- 1477-9234. ; 52:19, s. 6515-6526
  • Tidskriftsartikel (refereegranskat)abstract
    • Light-emitting materials based on earth-abundant metals, such as manganese hold great promise as emitters for organic lighting devices. In order to apply such emitter materials and, in particular, to overcome the problem of self-quenching due to cross-relaxation, we investigated a series of tetrabromidomanganate ([MnBr4]2−) salts with bulky tetraalkylphosphonium counter cations [Pnnn]+, namely [Pnnnn]2[MnBr4] (n = 4 (1), 6 (2) and 8 (3)), which can be obtained by a straightforward reaction of the respective phosphonium bromide and MnBr2. Variation of the cation size allows control of the properties of the resulting ionic materials. 1 and 3 qualify as ionic liquids (ILs), where 1 features a melting point of 68 °C, and 3 is liquid at room temperature and even at very low temperatures. Furthermore, 1 and 2 show the formation of higher-ordered thermotropic mesophases. For 1 a transition to a thermodynamically metastable smectic liquid crystalline phase can be observed at room temperature upon reheating from the metastable glassy state; 2 appears to form a plastic crystalline phase at ∼63 °C, which persists up to the melting point of 235 °C. The photoemission is greatly affected by phase behaviour and ion dynamics. A photoluminescence quantum yield of 61% could be achieved, by balancing the increase in Mn2+-Mn2+ separation and reducing self-quenching through increasingly large organic cations which leads to adverse increased vibrational quenching. Compared to analogous ammonium compounds, which have been promoted as @#x0308;inorganic hybrid perovskite, the phosphonium salts show superior performance, with respect to photoluminescent quantum yield and thermal and air/humidity stability. As the presented compounds are not sensitive to the atmosphere, in particular moisture, and show strong visible electroluminescence in the green region of light, they are important emitter materials for use in organic light-emitting devices.
  •  
5.
  • Adranno, Brando, 1993- (författare)
  • In Light of Ionic Materials : A short exploration of ionic materials for light-related applications
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Ionic liquids (ILs) have been one of the most attractive classes of materials of the last decades. The reason behind this is their peculiar set of properties, which enable their possible application in several research fields. ILs are salts that exhibit a very low melting point, which has been arbitrarily defined to be below 100 °C. Due to their ionic nature, ILs have little to no vapor pressure and they often demonstrate good electrical conductivity and high thermal and electrochemical stability. In this work, the focus is directed toward the exploitation of ILs for the engineering of materials that can have a primary role in light-emitting or light-absorbing devices. Materials belonging to the first type are explored in Papers I-III, while the ones belonging to the second are tackled in Papers IV and V.There has always been a struggle to find a balance between costs and the efficiency of emitting materials for application in dedicated devices. In Papers I-III, two strategies are taken into account to address this issue. Finding inspiration from ionic complexes of Mn(II), newly designed ionic materials and ILs emitting green light are proposed as an alternative to the more expensive heavy metals-based ones such as Ir(III) and Pt(II). Coming closer to an ideal compromise of cost and performance, fully organic and extremely cheap low-melting salts based on the 8-hydroxyquinoline unit were prepared. These compounds revealed efficient fluorescence in the blue region of the spectrum for such simple molecules, paving the way for the preparation of possibly inexpensive light-emitting devices.In Paper IV, direct absorption of light is taken into consideration with photoresponsive ionic liquids, which undergo cis-trans isomerization. Due to this feature and their ionic nature, these materials could be adopted into photoswitches. Additionally, the effect of functional groups on the isomerization of the ILs and on the ability of the materials to undergo mesophase formation was studied.One of the key components of dye-sensitized solar cells is the electrolytic mediator sandwiched between two electrodes. This has been a matter of intense study due to issues regarding its stability, which impair the device's performance. ILs can be adopted in devices to solve this issue. In Paper V, triazolium ILs allowed the manufacturing of devices with higher efficiencies and longer lifetimes than the ones realized with imidazolium relatives. These materials allowed for the stability of the ionic couple I-/I3- and moisture resistance due to their non-hygroscopic nature.
  •  
6.
  • Adranno, Brando, et al. (författare)
  • The 8-hydroxyquinolinium cation as a lead structure for efficient color-tunable ionic small molecule emitting materials
  • 2023
  • Ingår i: Advanced Photonics Research. - : John Wiley & Sons. - 2699-9293. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Albeit tris(8-hydroxyquinolinato) aluminum (Alq3) and its derivatives are prominent emitter materials for organic lighting devices, and the optical transitions occur among ligand-centered states, the use of metal-free 8-hydroxyquinoline is impractical as it suffers from strong nonradiative quenching, mainly through fast proton transfer. Herein, it is shown that the problem of rapid proton exchange and vibration quenching of light emission can be overcome not only by complexation, but also by organization of the 8-hydroxyquinolinium cations into a solid rigid network with appropriate counter-anions (here bis(trifluoromethanesulfonyl)imide). The resulting structure is stiffened by secondary bonding interactions such as pi-stacking and hydrogen bonds, which efficiently block rapid proton transfer quenching and reduce vibrational deactivation. Additionally, the optical properties are tuned through methyl substitution from deep blue (455 nm) to blue-green (488 nm). Time-dependent density functional theory (TDFT) calculations reveal the emission to occur from which an unexpectedly long-lived S-1 level, unusual for organic fluorophores. All compounds show comparable, even superior photoluminescence compared to Alq3 and related materials, both as solids and thin films with quantum yields (QYs) up to 40-50%. In addition, all compounds show appreciable thermal stability with decomposition temperatures above 310 °C.
  •  
7.
  • Alammar, Tarek, et al. (författare)
  • Ionic-Liquid-Assisted Microwave Synthesis of Solid Solutions of Sr1-xBaxSnO3 Perovskite for Photocatalytic Applications
  • 2017
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 10:17, s. 3387-3401
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocrystalline Sr1-xBaxSnO3 (x=0, 0.2, 0.4, 0.8, 1) perovskite photocatalysts were prepared by microwave synthesis in an ionic liquid (IL) and subsequent heat-treatment. The influence of the Sr/Ba substitution on the structure, crystallization, morphology, and photocatalytic efficiency was investigated and the samples were fully characterized. On the basis of X-ray diffraction results, as the Ba content in the SrSnO3 lattice increases, a symmetry increase was observed from the orthorhombic perovskite structure for SrSnO3 to the cubic BaSnO3 structure. The analysis of the sample morphology by SEM reveals that the Sr1-xBaxSnO3 samples favor the formation of nanorods (500nm-5m in diameter and several micrometers long). The photophysical properties were examined by UV/Vis diffuse reflectance spectroscopy. The band gap decreases from 3.85 to 3.19eV with increasing Ba2+ content. Furthermore, the photocatalytic properties were evaluated for the hydroxylation of terephthalic acid (TA). The order of the activities for TA hydroxylation was Sr0.8Ba0.2SnO3>SrSnO3>BaSnO3>Sr0.6Ba0.4SnO3>Sr0.2Ba0.8SnO3. The highest photocatalytic activity was observed for Sr0.8Ba0.2SnO3, and this can be attributed to the synergistic impacts of the modification of the crystal structure and morphology, the relatively large surface area associated with the small crystallite size, and the suitable band gap and band-edge position.
  •  
8.
  • Alammar, Tarek, et al. (författare)
  • Luminescence properties of mechanochemically synthesized lanthanide containing MIL-78 MOFs
  • 2018
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry (RSC). - 1477-9226 .- 1477-9234. ; 47:22, s. 7594-7601
  • Tidskriftsartikel (refereegranskat)abstract
    • Three metal-organic framework (MOF) compounds, Ln(0.6) Gd-0.(6) {C6H (COO)(3)); Ln = Eu, Tb, and Dy with a MIL-78 structure, have been synthesized by a solvent-free mechanochemical method from stoichiometric mixtures of benzene 1,3,5-tricarboxylic acid, C6H3 (COOH)(3), also known as trimesic acid, and the respective lanthanide carbonates, Ln(2)(CO3)(3)center dot xH(2)O, Ln = Eu, Gd, Tb and Dy. MIL-78 (Ln(0.5)Gd(0.)(6)) shows the characteristic red, green, and yellow luminescence of Eu3+, Tb3+, and Dy3+, respectively. Efficient intramolecular energy transfer from the ligand triplet state to the excited states of Ln(3+) ions can be observed. The lifetimes and quantum yields of these compounds are studied and discussed in detail. Among the three compounds, the Tb3+ containing compound shows the longest lifetime and highest quantum yield due to a smaller contribution from non-radiative decay pathways and better matching of the lowest triplet energy level of the benzenetricarboxylate ligand and the resonance level of Tb3+.
  •  
9.
  • Alammar, Tarek, et al. (författare)
  • Mechanochemical synthesis, luminescent and magnetic properties of lanthanide benzene-1,4-dicarboxylate coordination polymers (Ln(0.5)Gd(0.5))(2) (1,4-BDC)(3)(H2O)(4); Ln = Sm, Eu, Tb
  • 2020
  • Ingår i: New Journal of Chemistry. - : Royal Society of Chemistry (RSC). - 1144-0546 .- 1369-9261. ; 44:3, s. 1054-1062
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanochemical reactions of benzene-1,4-dicarboxylate (BDC2-) and lanthanide carbonates, Ln(2)(CO3)(3)center dot xH(2)O (Ln = Sm, Eu, Gd, Tb) yield phase pure lanthanide coordination polymers, (Ln(0.5)Gd(0.5))(2)(1,4-BDC)(3)(H2O)(4) with Ln = Sm, Eu, Tb, which are isostructural with Tb-2(1,4-BDC)(3)(H2O)(4) as confirmed by powder X-ray diffraction and vibrational spectroscopy. Upon excitation with UV light all three compounds display strong emissions, characteristic for the respective optically active lanthanide ion, namely, red for Eu3+, green for Tb3+ and orange-red for Sm3+. In case of the Tb3+-containing compound, the energy difference between the triplet energy level of benzene-1,4-dicarboxylate ligand (BDC2-) allows for the most efficient BDC2--Tb3+ energy transfer. As a consequence, an intense green luminescence with rather long lifetime (0.81 ms) and high quantum yield (22%) is observed after allowed excitation of the BDC2- ligand. The compounds are paramagnetic with no onset of long range magnetic ordering down to liquid He temperatures.
  •  
10.
  • Alammar, Tarek, et al. (författare)
  • Microwave-Assisted Synthesis of Perovskite SrSnO3 Nanocrystals in Ionic Liquids for Photocatalytic Applications
  • 2017
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 56:12, s. 6920-6932
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanosized SrSnO3 photocatalysts have been successfully synthesized by microwave synthesis in various ionic liquids (ILs) followed by a heat treatment process to optimize the materials' crystallinity. The influence of the ILs with various cations such as 1-butyl-3-methylimidazolium ([C(4)mim](+)), 6-bis(3-methylimidazolium-1-yl)hexane ([C-6(mim)(2)](2+)), butylpyridinium ([C4Py](+)), and tetradecyltrihexylphosphonium ([P-66614](+)) and bis(trifluoromethanesulfonyl)amide ([Tf2N](-)) as the anion on the structure, crystallization, and morphology of the products was investigated. The samples were characterized by X-ray diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM), surface area analysis by gas adsorption, X-ray photoelectron spectroscopy (XPS), diffuse reflectance UV vis spectroscopy, and Raman and IR spectroscopy. According to structure characterization by XRD and Raman spectroscopy all samples wcrystallized phase-pure in the orthorhombic GdFeO3 perovskite structure type. SEM reveals that, on the basis of the IL, th(e) obtained SrSnO3 nanoparticles exhibit different morphologies and sizes. Rod-shaped particles are formed in [C(4)minn][Tf2N], [C-6(mim)(2)][Tf2N](2), and p [P-66614][Tf2N]. However, the particle dimensions and size distribution vary depending on the IL and range from quite thin and long needlelike partinles with a narrow size distribution obtained in [P-66614] [TfA to relatively larger particles with a broader size distribution obtained in [C-6(mim)(2)][Tf2N](2). In contrast, in [C4Py][Tf2N] nanospheres with a diameter of about 50 nm form. For these particles the highest photocatalytic activity was observed. Our investigations indicate that the improved photocatalytic activity of this material results from the synergistic effect of the relatively large surface area associated with nanosize and an appropriate energy band structure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 122
Typ av publikation
tidskriftsartikel (106)
annan publikation (7)
forskningsöversikt (6)
doktorsavhandling (3)
Typ av innehåll
refereegranskat (112)
övrigt vetenskapligt/konstnärligt (10)
Författare/redaktör
Mudring, Anja-Verena (109)
Smetana, Volodymyr (75)
Rogers, Robin D. (18)
Bousrez, Guillaume (16)
Wilk-Kozubek, Magdal ... (10)
Renier, Olivier (10)
visa fler...
Ovchinnikov, Alexand ... (10)
Mudring, Anja-Verena ... (10)
Kelley, Steven P. (10)
Alammar, Tarek (8)
Sangeetha, N. S. (8)
Johnston, D. C. (8)
Adranno, Brando (7)
Pecharsky, Vitalij K ... (7)
Glavatskih, Sergei (7)
Hammond, Oliver S. (7)
Manfrinetti, Pietro (7)
Dorn, Katharina V. (7)
Li, Sichao (7)
Paterlini, Veronica (6)
Pei, Hanwen (6)
Celania, Chris (6)
Provino, Alessia (6)
Valldor, Martin (6)
Rutland, Mark W., Pr ... (5)
Smetana, Volodymyr, ... (5)
Shtender, Vitalii (5)
Moir, Michael (5)
Pakhira, Santanu (5)
Pani, Marcella (4)
Babizhetskyy, Volody ... (4)
Bell, Thomas (4)
Meyer, Gerd (4)
Tang, Si-Fu (4)
de Campo, Liliana (4)
Nelson, Andrew (4)
Recsei, Carl (4)
Mishra, Manish Kumar (4)
Tang, Shi (3)
Edman, Ludvig, 1967- (3)
Mudring, Anja-Verena ... (3)
Shimpi, Manishkumar ... (3)
Pilkington, Georgia ... (3)
Hiti, Ethan A. (3)
Qu, Fengrui (3)
Namanga, Jude E. (3)
Mallick, Bert (3)
Gerlitzki, Niels (3)
Bernini, Cristina (3)
Prodius, Denis (3)
visa färre...
Lärosäte
Stockholms universitet (111)
Umeå universitet (9)
Kungliga Tekniska Högskolan (7)
Uppsala universitet (7)
Luleå tekniska universitet (3)
Linköpings universitet (3)
visa fler...
RISE (2)
Lunds universitet (1)
visa färre...
Språk
Engelska (122)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (117)
Teknik (15)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy