SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mudway I) "

Sökning: WFRF:(Mudway I)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Friberg, Maria, 1979-, et al. (författare)
  • Human exposure to diesel exhaust induces CYP1A1 expression and AhR activation without a coordinated antioxidant response
  • 2023
  • Ingår i: Particle and Fibre Toxicology. - : BioMed Central (BMC). - 1743-8977. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Diesel exhaust (DE) induces neutrophilia and lymphocytosis in experimentally exposed humans. These responses occur in parallel to nuclear migration of NF-κB and c-Jun, activation of mitogen activated protein kinases and increased production of inflammatory mediators. There remains uncertainty regarding the impact of DE on endogenous antioxidant and xenobiotic defences, mediated by nuclear factor erythroid 2-related factor 2 (Nrf2) and the aryl hydrocarbon receptor (AhR) respectively, and the extent to which cellular antioxidant adaptations protect against the adverse effects of DE.Methods: Using immunohistochemistry we investigated the nuclear localization of Nrf2 and AhR in the epithelium of endobronchial mucosal biopsies from healthy subjects six-hours post exposure to DE (PM10, 300 µg/m3) versus post-filtered air in a randomized double blind study, as a marker of activation. Cytoplasmic expression of cytochrome P450s, family 1, subfamily A, polypeptide 1 (CYP1A1) and subfamily B, Polypeptide 1 (CYP1B1) were examined to confirm AhR activation; with the expression of aldo–keto reductases (AKR1A1, AKR1C1 and AKR1C3), epoxide hydrolase and NAD(P)H dehydrogenase quinone 1 (NQO1) also quantified. Inflammatory and oxidative stress markers were examined to contextualize the responses observed.Results: DE exposure caused an influx of neutrophils to the bronchial airway surface (p = 0.013), as well as increased bronchial submucosal neutrophil (p < 0.001), lymphocyte (p = 0.007) and mast cell (p = 0.002) numbers. In addition, DE exposure enhanced the nuclear translocation of the AhR and increased the CYP1A1 expression in the bronchial epithelium (p = 0.001 and p = 0.028, respectively). Nuclear translocation of AhR was also increased in the submucosal leukocytes (p < 0.001). Epithelial nuclear AhR expression was negatively associated with bronchial submucosal CD3 numbers post DE (r = −0.706, p = 0.002). In contrast, DE did not increase nuclear translocation of Nrf2 and was associated with decreased NQO1 in bronchial epithelial cells (p = 0.02), without affecting CYP1B1, aldo–keto reductases, or epoxide hydrolase protein expression.Conclusion: These in vivo human data confirm earlier cell and animal-based observations of the induction of the AhR and CYP1A1 by diesel exhaust. The induction of phase I xenobiotic response occurred in the absence of the induction of antioxidant or phase II xenobiotic defences at the investigated time point 6 h post-exposures. This suggests DE-associated compounds, such as polycyclic aromatic hydrocarbons (PAHs), may induce acute inflammation and alter detoxification enzymes without concomitant protective cellular adaptations in human airways.
  •  
4.
  • Muala, Ala, et al. (författare)
  • Acute exposure to wood smoke from incomplete combustion - indications of cytotoxicity
  • 2015
  • Ingår i: Particle and Fibre Toxicology. - : Springer Science and Business Media LLC. - 1743-8977. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Smoke from combustion of biomass fuels is a major risk factor for respiratory disease, but the underlying mechanisms are poorly understood. The aim of this study was to determine whether exposure to wood smoke from incomplete combustion would elicit airway inflammation in humans. Methods: Fourteen healthy subjects underwent controlled exposures on two separate occasions to filtered air and wood smoke from incomplete combustion with PM1 concentration at 314 mu g/m(3) for 3 h in a chamber. Bronchoscopy with bronchial wash (BW), bronchoalveolar lavage (BAL) and endobronchial mucosal biopsies was performed after 24 h. Differential cell counts and soluble components were analyzed, with biopsies stained for inflammatory markers using immunohistochemistry. In parallel experiments, the toxicity of the particulate matter (PM) generated during the chamber exposures was investigated in vitro using the RAW264.7 macrophage cell line. Results: Significant reductions in macrophage, neutrophil and lymphocyte numbers were observed in BW (p < 0.01, < 0.05, < 0.05, respectively) following the wood smoke exposure, with a reduction in lymphocytes numbers in BAL fluid (< 0.01. This unexpected cellular response was accompanied by decreased levels of sICAM-1, MPO and MMP-9 (p < 0.05, < 0.05 and < 0.01). In contrast, significant increases in submucosal and epithelial CD3+ cells, epithelial CD8+ cells and submucosal mast cells (p < 0.01, < 0.05, < 0.05 and < 0.05, respectively), were observed after wood smoke exposure. The in vitro data demonstrated that wood smoke particles generated under these incomplete combustion conditions induced cell death and DNA damage, with only minor inflammatory responses. Conclusions: Short-term exposure to sooty PAH rich wood smoke did not induce an acute neutrophilic inflammation, a classic hallmark of air pollution exposure in humans. While minor proinflammatory lymphocytic and mast cells effects were observed in the bronchial biopsies, significant reductions in BW and BAL cells and soluble components were noted. This unexpected observation, combined with the in vitro data, suggests that wood smoke particles from incomplete combustion could be potentially cytotoxic. Additional research is required to establish the mechanism of this dramatic reduction in airway leukocytes and to clarify how this acute response contributes to the adverse health effects attributed to wood smoke exposure.
  •  
5.
  • Mudway, I S, et al. (författare)
  • Differences in basal airway antioxidant concentrations are not predictive of individual responsiveness to ozone : a comparison of healthy and mild asthmatic subjects
  • 2001
  • Ingår i: Free Radical Biology & Medicine. - : Elsevier. - 0891-5849 .- 1873-4596. ; 31:8, s. 962-974
  • Tidskriftsartikel (refereegranskat)abstract
    • The air pollutant ozone induces both airway inflammation and restrictions in lung function. These responses have been proposed to arise as a consequence of the oxidizing nature of ozone, depleting endogenous antioxidant defenses with ensuing tissue injury. In this study we examined the impact of an environmentally relevant ozone challenge on the antioxidant defenses present at the surface of the lung in two groups known to have profound differences in their antioxidant defense network: healthy control (HC) and mild asthmatic (MA) subjects. We hypothesized that baseline differences in antioxidant concentrations within the respiratory tract lining fluid (RTLF), as well as induced responses, would predict the magnitude of individual responsiveness. We observed a significant loss of ascorbate (ASC) from proximal (-45.1%, p <.01) and distal RTLFs (-11.7%, p <.05) in healthy subjects 6 h after the end of the ozone challenge. This was associated (Rs, -0.71, p <.01) with increased glutathione disulphide (GSSG) in these compartments (p =.01 and p <.05). Corresponding responses were not seen in asthmatics, where basal ASC concentrations were significantly lower (p <.01) and associated with elevated concentrations of GSSG (p <.05). In neither group was any evidence of lipid oxidation seen following ozone. Despite differences in antioxidant levels and response, the magnitude of ozone-induced neutrophilia (+20.6%, p <.01 [HC] vs. +15.2%, p =.01 [MA]) and decrements in FEV(1) (-8.0%, p <.01 [HC] vs. -3.2%, p <.05 [MA]) did not differ between the two groups. These data demonstrate significant differences between the interaction of ozone with RTLF antioxidants in MA and HC subjects. These responses and variations in basal antioxidant defense were not, however, useful predictive markers of group or individual responsiveness to ozone.
  •  
6.
  •  
7.
  • Stenfors, Nikolai, et al. (författare)
  • Effect of ozone on bronchial mucosal inflammation in asthmatic and healthy subjects
  • 2002
  • Ingår i: Respiratory Medicine. - : Saunders Elsevier. - 0954-6111 .- 1532-3064. ; 96:5, s. 352-358
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiological studies suggestthat asthmatics are more affected by ozone than healthy people. This study tested three hypotheses (1) that short-term exposure to ozone induces inflammatory cell increases and up-regulation of vascular adhesion molecules in airway lavages and bronchial tissue 6 h after ozone exposure in healthy subjects; (2) these responses are exaggerated in subjects with mild allergic asthma; (3) ozone exacerbates pre-existent allergic airways inflammation. We exposed 15 mild asthmatic and 15 healthy subjects to 0.2 ppm of ozone or filtered air for 2 h on two separate occasions. Airway lavages and bronchial biopsies were obtained 6 h post-challenge. We found that ozone induced similar increases in bronchial wash neutrophils in both groups, although the neutrophil increase in the asthmatic group was on top of an elevated baseline. In healthy subjects, ozone exposure increased the expression of the vascular endothelial adhesion molecules P-selectin and ICAM- 1, as well as increasing tissue neutrophil and mast cell numbers. The asthmatics showed allergic airways inflammation at baseline but ozone did not aggravate this at the investigated time point. At 6 h post-ozone-exposure, we found no evidence that mild asthmatics were more responsive than healthy to ozone in terms of exaggerated neutrophil recruitment or exacerbation of pre-existing allergic inflammation. Further work is needed to assess the possibility of a difference in time kinetics between healthy and asthmatic subjects in their response to ozone.
  •  
8.
  • Stenfors, Nikolai, et al. (författare)
  • Ozone exposure enhances mast-cell inflammation in asthmatic airways despite inhaled corticosteroid therapy.
  • 2010
  • Ingår i: Inhalation Toxicology. - : Informa Healthcare. - 0895-8378 .- 1091-7691. ; 22:2, s. 133-139
  • Tidskriftsartikel (refereegranskat)abstract
    • Asthmatics are recognised to be more susceptible than healthy individuals to adverse health effects caused by exposure to the common air pollutant ozone. Ozone has been reported to induce airway neutrophilia in mild asthmatics, but little is known about how it affects the airways of asthmatic subjects on inhaled corticosteroids. We hypothesised that ozone exposure would exacerbate the pre-existent asthmatic airway inflammation despite regular inhaled corticosteroid treatment. Therefore, we exposed subjects with persistent asthma on inhaled corticosteroid therapy to 0.2 ppm ozone or filtered air for 2 h, on 2 separate occasions. Lung function was evaluated before and immediately after exposure, while bronchoscopy was performed 18 h post exposure. Compared to filtered air, ozone exposure increased airway resistance. Ozone significantly enhanced neutrophil numbers and myeloperoxidase levels in airway lavages, and induced a fourfold increase in bronchial mucosal mast cell numbers. The present findings indicate that ozone worsened asthmatic airway inflammation and offer a possible biological explanation for the epidemiological findings of increased need for rescue medication and hospitalisation in asthmatic people following exposure to ambient ozone.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy