SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mueller Buschbaum P.) "

Sökning: WFRF:(Mueller Buschbaum P.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cao, Wei, et al. (författare)
  • Spray-Deposited Anisotropic Ferromagnetic Hybrid Polymer Films of PS-b-PMMA and Strontium Hexaferrite Magnetic Nanoplatelets
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 13:1, s. 1592-1602
  • Tidskriftsartikel (refereegranskat)abstract
    • Spray deposition is a scalable and cost-effective technique for the fabrication of magnetic hybrid films containing diblock copolymers (DBCs) and magnetic nanoparticles. However, it is challenging to obtain spray-deposited anisotropic magnetic hybrid films without using external magnetic fields. In the present work, spray deposition is applied to prepare perpendicular anisotropic magnetic hybrid films by controlling the orientation of strontium hexaferrite nanoplatelets inside ultra-high-molecular-weight DBC polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films. During spray deposition, the evolution of DBC morphology and the orientation of magnetic nanoplatelets are monitored with in situ grazing-incidence small-angle X-ray scattering (GISAXS). For reference, a pure DBC film without nanoplatelets is deposited with the same conditions. Solvent-controlled magnetic properties of the hybrid film are proven with solvent vapor annealing (SVA) applied to the final deposited magnetic films. Obvious changes in the DBC morphology and nanoplatelet localization are observed during SVA. The superconducting quantum interference device data show that ferromagnetic hybrid polymer films with high coercivity can be achieved via spray deposition. The hybrid films show a perpendicular magnetic anisotropy before SVA, which is strongly weakened after SVA. The spray-deposited hybrid films appear highly promising for potential applications in magnetic data storage and sensors.
  •  
2.
  • Gensch, Marc, et al. (författare)
  • Correlating Nanostructure, Optical and Electronic Properties of Nanogranular Silver Layers during Polymer-Template-Assisted Sputter Deposition
  • 2019
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 11:32, s. 29416-29426
  • Tidskriftsartikel (refereegranskat)abstract
    • Tailoring the optical and electronic properties of nanostructured polymer-metal composites demonstrates great potential for efficient fabrication of modern organic optical and electronic devices such as flexible sensors, transistors, diodes, or photovoltaics. Self-assembled polymer metal nanocomposites offer an excellent perspective for creating hierarchical nanostructures on macroscopic scales by simple bottom-up processes. We investigate the growth processes of nanogranular silver (Ag) layers on diblock copolymer thin film templates during sputter deposition. The Ag growth is strongly driven by self-assembly and selective wetting on the lamella structure of polystyrene-block-poly (methyl methacrylate). We correlate the emerging nanoscale morphologies with collective optical and electronic properties and quantify the difference in Ag growth on the corresponding homopolymer thin films. Thus, we are able to determine the influence of the respective polymer template and observe substrate effects on the Ag cluster percolation threshold, which affects the insulator-to-metal transition (IMT). Optical spectroscopy in the UV-vis regime reveals localized surface plasmon resonance for the metal polymer composite. Their maximum absorption is observed around the IMT due to the subsequent long-range electron conduction in percolated nanogranular Ag layers. Using X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, we identify the oxidation of Ag at the acrylate side chains as an essential influencing factor driving the selective wetting behavior in the early growth stages. The results of polymer-templated cluster growth are corroborated by atomic force microscopy and field emission scanning electron microscopy.
  •  
3.
  • Gensch, Marc, et al. (författare)
  • Selective Silver Nanocluster Metallization on Conjugated Diblock Copolymer Templates for Sensing and Photovoltaic Applications
  • 2021
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 4:4, s. 4245-4255
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymer-metal composite films with nanostructured metal and/or polymer interfaces show a significant perspective for optoelectronic applications, for example, as sensors or in organic photovoltaics (OPVs). The polymer components used in these devices are mostly nanostructured conductive polymers with conjugated pi-electron systems. Enhanced OPV's power conversion efficiencies or sensor sensitivity can be achieved by selective metal deposition on or into polymer templates. In this study, we exploit time-resolved grazing-incidence X-ray scattering to observe the metal-polymer interface formation and the cluster crystallite size in situ during silver (Ag) sputter deposition on a poly(3-hexylthiophene-2,5-diyl)-b-poly(methyl methacrylate) (PMMA-b-P3HT) template. We compare the arising nanoscale morphologies with electronic properties, determine Ag growth regimes, and quantify the selective Ag growth for the diblock copolymer (DBC) template using the corresponding homopolymer thin films (P3HT and PMMA) as a reference. Hence, we are able to describe the influence of the respective polymer blocks and substrate effects on the Ag cluster percolation: the percolation threshold is correlated with the insulator-to-metal transition measured in situ with resistance measurements during the sputter deposition. The Ag cluster percolation on PMMA-b-P3HT starts already on the network of the hexagonal P3HT domain before a complete metal film covers the polymer surface, which is complemented by microscopic measurements. In general, this study demonstrates a possible method for the selective Ag growth as a scaffold for electrode preparation in nanoelectronics and for energy harvesting applications.
  •  
4.
  • Heger, Julian E., et al. (författare)
  • Superlattice deformation in quantum dot films on flexible substrates via uniaxial strain
  • 2023
  • Ingår i: Nanoscale Horizons. - : Royal Society of Chemistry (RSC). - 2055-6764 .- 2055-6756. ; 8:3, s. 383-395
  • Tidskriftsartikel (refereegranskat)abstract
    • The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Forster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates.
  •  
5.
  • Reus, Manuel A., et al. (författare)
  • Modular slot-die coater for in situ grazing-incidence x-ray scattering experiments on thin films
  • 2024
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 95:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Multimodal in situ experiments during slot-die coating of thin films pioneer the way to kinetic studies on thin-film formation. They establish a powerful tool to understand and optimize the formation and properties of thin-film devices, e.g., solar cells, sensors, or LED films. Thin-film research benefits from time-resolved grazing-incidence wide- and small-angle x-ray scattering (GIWAXS/GISAXS) with a sub-second resolution to reveal the evolution of crystal structure, texture, and morphology during the deposition process. Simultaneously investigating optical properties by in situ photoluminescence measurements complements in-depth kinetic studies focusing on a comprehensive understanding of the triangular interdependency of processing, structure, and function for a roll-to-roll compatible, scalable thin-film deposition process. Here, we introduce a modular slot-die coater specially designed for in situ GIWAXS/GISAXS measurements and applicable to various ink systems. With a design for quick assembly, the slot-die coater permits the reproducible and comparable fabrication of thin films in the lab and at the synchrotron using the very same hardware components, as demonstrated in this work by experiments performed at Deutsches Elektronen-Synchrotron (DESY). Simultaneous to GIWAXS/GISAXS, photoluminescence measurements probe optoelectronic properties in situ during thin-film formation. An environmental chamber allows to control the atmosphere inside the coater. Modular construction and lightweight design make the coater mobile, easy to transport, quickly extendable, and adaptable to new beamline environments.
  •  
6.
  • Wang, Kun, et al. (författare)
  • Comparison of UV Irradiation and Sintering on Mesoporous Spongelike ZnO lms Prepared from PS-b-P4VP Templated Sol-Gel Synthesis
  • 2018
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 1:12, s. 7139-7148
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesoporous ZnO films with large surface-area-to-volume ratio show great omise in multiple applications, among which solid-state dye-sensitized lar cells (ssDSSCs) have attracted great attention in the field of otovoltaics. An appropriate mesopore size in the nanostructured ZnO lms significantly plays an indispensable role in improving the device ficiency that resulted from an efficient penetration of dye molecules d solid hole transport material. In the present work, mesoporous ongelike ZnO films are prepared using sol-gel synthesis templated by a block copolymer polystyrene-block-poly(4-vinylpyridine). Two different mplate removal techniques, ultraviolet (UV) irradiation and gh-temperature sintering, are used to compare their respective impact the pore sizes of the final ZnO thin films. Both the surface rphology and the inner morphology show that mesopores obtained via UV radiation are smaller as compared to their sintered counterparts. reover, increasing the template-to-ZnO precursor ratio is found to rther enlarge present mesopores. Accordingly, a strong correlation tween the pore sizes of sol-gel synthesized ZnO films and photovoltaic rformance of fabricated ssDSSCs is demonstrated. In contrast with the vices fabricated from the UV-irradiated ZnO films, those obtained from ntered samples show >2 times higher efficiency.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy