SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mukelabai M. M.) "

Sökning: WFRF:(Mukelabai M. M.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Merbold, L., et al. (författare)
  • Precipitation as driver of carbon fluxes in 11 African ecosystems
  • 2009
  • Ingår i: Biogeosciences. - 1726-4189. ; 6:6, s. 1027-1041
  • Tidskriftsartikel (refereegranskat)abstract
    • This study reports carbon and water fluxes between the land surface and atmosphere in eleven different ecosystems types in Sub-Saharan Africa, as measured using eddy covariance (EC) technology in the first two years of the CarboAfrica network operation. The ecosystems for which data were available ranged in mean annual rainfall from 320 mm (Sudan) to 1150 mm (Republic of Congo) and include a spectrum of vegetation types (or land cover) (open savannas, woodlands, croplands and grasslands). Given the shortness of the record, the EC data were analysed across the network rather than longitudinally at sites, in order to understand the driving factors for ecosystem respiration and carbon assimilation, and to reveal the different water use strategies in these highly seasonal environments. Values for maximum net carbon assimilation rates (photosynthesis) ranged from -12.5 mu mol CO2 m(-2) s(-1) in a dry, open Millet cropland (C-4-plants) up to -48 mu mol CO2 m(-2) s(-1) for a tropical moist grassland. Maximum carbon assimilation rates were highly correlated with mean annual rainfall (r(2)=0.74). Maximum photosynthetic uptake rates (Fp(max)) were positively related to satellite-derived f(APAR). Ecosystem respiration was dependent on temperature at all sites, and was additionally dependent on soil water content at sites receiving less than 1000 mm of rain per year. All included ecosystems dominated by C-3-plants, showed a strong decrease in 30-min assimilation rates with increasing water vapour pressure deficit above 2.0 kPa.
  •  
2.
  • Thum, T., et al. (författare)
  • Towards Efficient Analysis of Variation in Time and Space
  • 2020
  • Ingår i: SPLC '19: Proceedings of the 23rd International Systems and Software Product Line Conference - Volume B. pp. 57–64. - New York, NY, USA : ACM. - 9781450366687
  • Konferensbidrag (refereegranskat)abstract
    • Variation is central to today's software development. There are two fundamental dimensions to variation: Variation in time refers to the fact that software exists in numerous revisions that typically replace each other (i.e., a newer version supersedes an older one). Variation in space refers to differences among variants that are designed to coexist in parallel. There are numerous analyses to cope with variation in space (i.e., product-line analyses) and others that cope with variation in time (i.e., regression analyses). The goal of this work is to discuss to which extent product-line analyses can be applied to revisions and, conversely, where regression analyses can be applied to variants. In addition, we discuss challenges related to the combination of product-line and regression analyses. The overall goal is to increase the efficiency of analyses by exploiting the inherent commonality between variants and revisions.
  •  
3.
  • Yi, Chuixiang, et al. (författare)
  • Climate control of terrestrial carbon exchange across biomes and continents
  • 2010
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid-and high-latitudes, (2) a strong function of dryness at mid-and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 degrees N). The sensitivity of NEE to mean annual temperature breaks down at similar to 16 degrees C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.
  •  
4.
  • Mukelabai, M., et al. (författare)
  • Tackling combinatorial explosion : A study of industrial needs and practices for analyzing highly configurable systems
  • 2019
  • Ingår i: Lecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft fur Informatik (GI). - : Gesellschaft fur Informatik (GI). ; , s. 79-80
  • Konferensbidrag (refereegranskat)abstract
    • Hundreds of dedicated analysis techniques for highly configurable systems have been conceived, many of them able to analyze properties for all possible system configurations. Unfortunately, it is largely unknown whether these techniques are adopted in practice, whether they address actual needs, or which strategies practitioners apply. We present a study [MNM+18] of analysis practices and needs in industry based on surveys and interviews. We confirm that properties considered in the literature (e.g., reliability) are relevant and that consistency between variability models and artifacts is critical, but that the majority of analyses for specifications of configuration options (a.k.a., variability model analysis) is not perceived as needed. We identified pragmatic analysis strategies, including practices to avoid the need for analysis. We discuss analyses that are missing and synthesize our insights into suggestions for future research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy