SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mure M) "

Sökning: WFRF:(Mure M)

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ax, M., et al. (författare)
  • Regional lung ventilation in humans during hypergravity studied with quantitative SPECT
  • 2013
  • Ingår i: Respiratory Physiology & Neurobiology. - : Elsevier BV. - 1569-9048 .- 1878-1519. ; 189:3, s. 558-564
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently we challenged the view that arterial desaturation during hypergravity is caused by redistribution of blood flow to dependent lung regions by demonstrating a paradoxical redistribution of blood flow towards non-dependent regions. We have now quantified regional ventilation in 10 healthy supine volunteers at normal and three times normal gravity (1G and 3G). Regional ventilation was measured with Technegas (Tc-99m) and quantitative single photon emission computed tomography (SPECT). Hypergravity caused arterial desaturation, mean decrease 8%, p<0.05 vs. 1G. The ratio for mean ventilation per voxel for non-dependent and dependent lung regions was 0.81+/-0.12 during 1G and 1.63+/-0.35 during 3G (mean+/-SD), p<0.0001. Thus, regional ventilation was shifted from dependent to non-dependent regions. We suggest that arterial desaturation during hypergravity is caused by quantitatively different redistributions of blood flow and ventilation. To our knowledge, this is the first study presenting high-resolution measurements of regional ventilation in humans breathing normally during hypergravity.
  •  
2.
  • Ax, M, et al. (författare)
  • The influence of gravity on regional lung blood flow in humans: SPECT in the upright and head-down posture
  • 2017
  • Ingår i: Journal of applied physiology (Bethesda, Md. : 1985). - : American Physiological Society. - 1522-1601 .- 8750-7587. ; 122:6, s. 1445-1451
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies in humans have shown that gravity has little influence on the distribution of lung blood flow while changing posture from supine to prone. This study aimed to evaluate the maximal influence of posture by comparison of regional lung blood flow in the upright and head-down posture in 8 healthy volunteers, using a tilt table. Regional lung blood flow was marked by intravenous injection of macroaggregates of human albumin labeled with 99mTc or 113mIn, in the upright and head-down posture, respectively, during tidal breathing. Both radiotracers remain fixed in the lung after administration. The distribution of radioactivity was mapped using quantitative single photon emission computed tomography (SPECT) corrected for attenuation and scatter. All images were obtained supine during tidal breathing. A shift from upright to the head-down posture caused a clear redistribution of blood flow from basal to apical regions. We conclude that posture plays a role for the distribution of lung blood flow in upright humans, and that the influence of posture, and thereby gravity, is much greater in the upright and head-down posture than in horizontal postures. However, the results of the study demonstrate that lung structure is the main determinant of regional blood flow and gravity is a secondary contributor to the distribution of lung blood flow in the upright and head-down positions. NEW & NOTEWORTHY Using a dual-isotope quantitative SPECT method, we demonstrated that although a shift in posture redistributes blood flow in the direction of gravity, the results are also consistent with lung structure being a greater determinant of regional blood flow than gravity. To our knowledge, this is the first study to use modern imaging methods to quantify the shift in regional lung blood flow in humans at a change between the upright and head-down postures.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Petersson, J, et al. (författare)
  • Paradoxical redistribution of pulmonary blood flow in prone and supine humans exposed to hypergravity
  • 2006
  • Ingår i: Journal of applied physiology (Bethesda, Md. : 1985). - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 100:1, s. 240-248
  • Tidskriftsartikel (refereegranskat)abstract
    • We hypothesized that exposure to hypergravity in the supine and prone postures causes a redistribution of pulmonary blood flow to dependent lung regions. Four normal subjects were exposed to hypergravity by use of a human centrifuge. Regional lung perfusion was estimated by single-photon-emission computed tomography (SPECT) after administration of 99mTc-labeled albumin macroaggregates during normal and three times normal gravity conditions in the supine and prone postures. All images were obtained during normal gravity. Exposure to hypergravity caused a redistribution of blood flow from dependent to nondependent lung regions in all subjects in both postures. We speculate that this unexpected and paradoxical redistribution is a consequence of airway closure in dependent lung regions causing alveolar hypoxia and hypoxic vasoconstriction. Alternatively, increased vascular resistance in dependent lung regions is caused by distortion of lung parenchyma. The redistribution of blood flow is likely to attenuate rather than contribute to the arterial desaturation caused by hypergravity.
  •  
7.
  • Petersson, J, et al. (författare)
  • Physiological evaluation of a new quantitative SPECT method measuring regional ventilation and perfusion
  • 2004
  • Ingår i: Journal of applied physiology (Bethesda, Md. : 1985). - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 96:3, s. 1127-1136
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed a new quantitative single-photon-emission computed tomography (SPECT) method that uses 113mIn-labeled albumin macroaggregates and Technegas (99mTc) to estimate the distributions of regional ventilation and perfusion for the whole lung. The multiple inert-gas elimination technique (MIGET) and whole lung respiratory gas exchange were used as physiological evaluations of the SPECT method. Regional ventilation and perfusion were estimated by SPECT in nine healthy volunteers during awake, spontaneous breathing. Radiotracers were administered with subjects sitting upright, and SPECT images were acquired with subjects supine. Whole lung gas exchange of MIGET gases and arterial Po2 and Pco2 gases was predicted from estimates of regional ventilation and perfusion. We found a good agreement between measured and SPECT-predicted exchange of MIGET and respiratory gases. Correlations ( r2) between SPECT-predicted and measured inert-gas excretions and retentions were 0.99. The method offers a new tool for measuring regional ventilation and perfusion in humans.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy