SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Muresanu Dafin Fior) "

Sökning: WFRF:(Muresanu Dafin Fior)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Feng, Lianyuan, et al. (författare)
  • TiO2-Nanowired Delivery of DL-3-n-butylphthalide (DL-NBP) Attenuates Blood-Brain Barrier Disruption, Brain Edema Formation, and Neuronal Damages Following Concussive Head Injury
  • 2018
  • Ingår i: Molecular Neurobiology. - : Humana Press. - 0893-7648 .- 1559-1182. ; 55:1, s. 350-358
  • Tidskriftsartikel (refereegranskat)abstract
    • DL-3-n-butylphthalide (DL-NBP) is one of the constituents of Chinese celery extract that is used to treat stroke, dementia, and ischemic diseases. However, its role in traumatic brain injury is less well known. In this investigation, neuroprotective effects of DL-NBP in concussive head injury (CHI) on brain pathology were explored in a rat model. CHI was inflicted in anesthetized rats by dropping a weight of 114.6 g from a height of 20 cm through a guide tube on the exposed right parietal bone inducing an impact of 0.224 N and allowed them to survive 4 to 24 h after the primary insult. DL-NBP was administered (40 or 60 mg/kg, i.p.) 2 and 4 h after injury in 8-h survival group and 8 and 12 h after trauma in 24-h survival group. In addition, TiO2-nanowired delivery of DL-NBP (20 or 40 mg/kg, i.p.) in 8 and 24 h CHI rats was also examined. Untreated CHI showed a progressive increase in blood-brain barrier (BBB) breakdown to Evans blue albumin (EBA) and radioiodine (I[131]-), edema formation, and neuronal injuries. The magnitude and intensity of these pathological changes were most marked in the left hemisphere. Treatment with DL-NBP significantly reduced brain pathology in CHI following 8 to 12 h at 40-mg dose. However, 60-mg dose is needed to thwart brain pathology at 24 h following CHI. On the other hand, TiO2-DL-NBP was effective in reducing brain damage up to 8 or 12 h using a 20-mg dose and only 40-mg dose was needed for neuroprotection in CHI at 24 h. These observations are the first to suggest that (i) DL-NBP is quite effective in reducing brain pathology and (ii) nanodelivery of DL-NBP has far more superior effects in CHI, not reported earlier.
  •  
3.
  • Lafuente, Jose Vicente, et al. (författare)
  • Diabetes Exacerbates Nanoparticles Induced Brain Pathology
  • 2012
  • Ingår i: CNS & Neurological Disorders. - : Bentham Science Publishers Ltd.. - 1871-5273 .- 1996-3181. ; 11:1, s. 26-39
  • Forskningsöversikt (refereegranskat)abstract
    • Long term exposure of nanoparticles e.g., silica dust (SiO2) from desert environments, or engineered nanoparticles from metals viz., Cu, Al or Ag from industry, ammunition, military equipment and related products may lead to adverse effects on mental health. However, it is unclear whether these nanoparticles may further adversely affect human health in cardiovascular or metabolic diseases e.g., hypertension or diabetes. It is quite likely that in diabetes or hypertension where the body immune system is already compromised there will be greater adverse effects following nanoparticles exposure on human health as compared to their exposure to healthy individuals. Previous experiments from our laboratory showed that diabetic or hypertensive animals are more susceptible to heat stress-induced neurotoxicity. Furthermore, traumatic injury to the spinal cord in SiO2 exposed rats resulted in exacerbation of cord pathology. However, whether nanoparticles such as Cu, Ag or SiO2 exposure will lead to enhanced neurotoxicity in diabetic animals are still not well investigated. Previous data from our laboratory showed that Cu or Ag intoxication (50 mg/kg, i.p. per day for 7 days) in streptozotocine induced diabetic rats exhibited enhanced neurotoxicity and exacerbation of sensory, motor and cognitive function as compared to normal animals under identical conditions. Thus the diabetic animals showed exacerbation of regional blood-brain barrier (BBB) disruption, edema formation and cell injuries along with greater reduction in the local cerebral blood flow (CBF) as compared to normal rats. These observations suggest that diabetic animals are more vulnerable to nanoparticles induced brain damage than healthy rats. The possible mechanisms and functional significance of these findings are discussed in this review largely based on our own investigations.
  •  
4.
  • Menon, Preeti Kumaran, et al. (författare)
  • Cerebrolysin, a Mixture of Neurotrophic Factors Induces Marked Neuroprotection in Spinal Cord Injury Following Intoxication of Engineered Nanoparticles from Metals
  • 2012
  • Ingår i: CNS & Neurological Disorders - Drug Targets. - : Bentham Science Publishers Ltd.. - 1871-5273. ; 11:1, s. 40-49
  • Forskningsöversikt (refereegranskat)abstract
    • Spinal cord injury (SCI) is the world's most disastrous disease for which there is no effective treatment till today. Several studies suggest that nanoparticles could adversely influence the pathology of SCI and thereby alter the efficacy of many neuroprotective agents. Thus, there is an urgent need to find suitable therapeutic agents that could minimize cord pathology following trauma upon nanoparticle intoxication. Our laboratory has been engaged for the last 7 years in finding suitable therapeutic strategies that could equally reduce cord pathology in normal and in nanoparticle-treated animal models of SCI. We observed that engineered nanoparticles from metals e.g., aluminum (Al), silver (Ag) and copper (Cu) (50-60 nm) when administered in rats daily for 7 days (50 mg/kg, i.p.) resulted in exacerbation of cord pathology after trauma that correlated well with breakdown of the blood-spinal cord barrier (BSCB) to serum proteins. The entry of plasma proteins into the cord leads to edema formation and neuronal damage. Thus, future drugs should be designed in such a way to be effective even when the SCI is influenced by nanoparticles. Previous research suggests that a suitable combination of neurotrophic factors could induce marked neuroprotection in SCI in normal animals. Thus, we examined the effects of a new drug; cerebrolysin that is a mixture of different neurotrophic factors e.g., brain-derived neurotrophic factor (BDNF), glial cell line derived neurotrophic factor (GDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF) and other peptide fragments to treat normal or nanoparticle-treated rats after SCI. Our observations showed that cerebrolysin (2.5 ml/kg, i.v.) before SCI resulted in good neuroprotection in normal animals, whereas nanoparticle-treated rats required a higher dose of the drug (5.0 ml/kg, i.v.) to induce comparable neuroprotection in the cord after SCI. Cerebrolysin also reduced spinal cord water content, leakage of plasma proteins and the number of injured neurons. This indicates that cerebrolysin in higher doses could be a good candidate for treating SCI cases following nanoparticle intoxication. The possible mechanisms and functional significance of these findings are discussed in this review.
  •  
5.
  • Muresanu, Dafin Fior, et al. (författare)
  • Chronic Hypertension Aggravates Heat Stress-Induced Brain Damage : Possible Neuroprotection by Cerebrolysin
  • 2010
  • Ingår i: Brain Edema XIV. - Vienna : Springer. - 9783211987582 - 9783211988114 ; , s. 327-333
  • Konferensbidrag (refereegranskat)abstract
    • Whole body hyperthermia (WBH) aggravates brain edema formation and cell damage in chronic hypertensive rats compared with normotensive animals. In this investigation, we examined the influence of cerebrolysin on WBH-induced edema formation and brain pathology in hypertensive and normotensive rats. Rats subjected to 4 h WBH at 38 C in a biological oxygen demand (BOD) incubator showed breakdown of the blood-brain barrier (BBB), reduced cerebral blood flow (CBF), edema formation and cell injuries in several parts of the brain. These effects were further aggravated in chronic hypertensive rats (two-kidney one clip model (2K1C), for 4 weeks) subjected to WBH. Pretreatment with cerebrolysin (5 mL/kg, 24 h and 30 min before heat stress) markedly attenuated the BBB dysfunction and brain pathology in normal animals. However, in hypertensive animals, a high dose of cerebrolysin (10 mL/kg, 24 h and 30 min before heat stress) was needed to attenuate WBH-induced BBB dysfunction and brain pathology. These observations indicate that heat stress could affect differently in normal and hypertensive conditions. Furthermore, our results suggest that patients suffering from various chronic cardiovascular diseases may respond differently to hyperthermia and to neuroprotective drugs, e.g., cerebrolysin not reported earlier.
  •  
6.
  • Muresanu, Dafin Fior, et al. (författare)
  • Exacerbation of blood-brain barrier breakdown, edema formation, nitric oxide synthase upregulation and brain pathology after heat stroke in diabetic and hypertensive rats. Potential neuroprotection with cerebrolysin treatment
  • 2019
  • Ingår i: New Therapeutic Strategies for Brain Edema and Cell Injury. - : Elsevier. - 9780128167540 ; , s. 83-102
  • Bokkapitel (refereegranskat)abstract
    • There is a growing trend of hypertension among military and civilian populations due to lifetime stressful situations. If hypertension is uncontrolled it leads to development of diabetes and serious neurological complications. Most of the World populations live in temperate zone across the World. Thus, a possibility exists that these hypertensive and diabetic people may have external heat as potential risk factors for brain damage. We have seen brain edema and brain damage following exposure to heat stress at 38 degrees C for 4h. A possibility exists that heat exposure in diabetic-hypertensive (DBHY) cases exacerbates exacerbation of brain pathology and edema formation. This hypothesis is examined in a rat model. The role of nitric oxide (NO) in exacerbation of HS-induced brain pathology was also evaluated using nitric oxide synthase (NOS) immunoreactivity. Hypertensive rats (produced by two-kidney one clip (2K1C) method) were made diabetic with streptozotocine (50 mg/kg, i.p./day for 3 days) treatment. After 6 weeks, DBHY rats show 20-30 mM/L Blood Glucose and hypertension (180-200 mmHg). Subjection of these rats to 4h HS resulted in six- to eightfold higher BBB breakdown, brain edema formation and brain pathology. At this time, neuronal or inducible NOS expression was four- to sixfold higher in DBHY rats compared to controls. Interestingly, iNOS expression was higher than nNOS in DBHY rats. Cerebrolysin in high doses (10-mL/kg, i.v. instead of 5-mL/kg) induced significant neuroprotection and downregulation of nNOS and iNOS in DBHY animals whereas normal animals need only 5-mL/kg doses for this purpose. Our observations demonstrate that co-morbidly factors exacerbate brain damage in HS through NOS expression and require double dose of cerebrolysin for neuroprotection as compared to normal rats, not reported earlier.
  •  
7.
  • Muresanu, Dafin Fior, et al. (författare)
  • Hypertension Associated With Silica Dust Intoxication Aggravates Brain Pathology Following Traumatic Brain Injury : New Roles of Neurotrophic Factors
  • 2017
  • Ingår i: The journal of head trauma rehabilitation. - 0885-9701 .- 1550-509X. ; 32:6, s. E68-E69
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Introduction/Rational: Military personnel engaged in combat operation are often exposed to desert storm resulting in silica dust (SiO2 nanoparticles) intoxication. In addition, combat stress, sleep deprivation and continuous attention for enemy group results in mild to moderate hypertension. Under such situations, any traumatic brain or spinal cord injury could result in massive brain pathology due to stress induced hypertension and possibly SiO2 nanoparticles intoxication. However, effects of trauma in hypertension and SiO2 intoxication are still not well known. In present study we investigated the effects of hypertension and SiO2 intoxication of the pathophysiology of traumatic brain injury (TBI).Method/Approach: Male Wistar rats (250-300 g) were made renal hypertensive by 2kidney 1clip (2K1C) procedure allowing mean arterial blood pressure (MABP) reaching 180 ± 8 torr over 6 weeks. These hypertensive rats were exposed to SiO2NPs (40-50 nm) once daily (50 mg/kg, i.p.) for 8 days. On the 9th day these hypertensive and SiO2NPs intoxicated animals were subjected to TBI under anesthesia by making an incision (3 mm long and 2.5 mm deep) on the right parietal cerebral cortex after opening the skull (4mmOD) on both sides. The animas were allowed to survive 48 h after TBI.Results/Effects: TBI in hypertensive and SiO2 nanoparticles intoxicated rats showed 4-to-6 fold higher breakdown of the blood-brain barrier (BBB) to Evans blue albumin (EBA) and [131]-Iodine, edema formation and neuronal injuries as compared to TBI in normal animals at 48 h. Treatment with a multimodal drug Cerebrolysin-containing balanced composition of neurotrophic factors and active peptide fragments (10 ml/kg, i.v.) started 4 h after TBI followed by 4 injections at every 8 h markedly reduced brain pathologies. Whereas only 5 ml/kg of the drug is needed to achieve identical neuroprotection in normal rats after TBI.Conclusions/Limitations: These observations are the first to show that a combination of hypertension and SiO2 nanoparticles worsens brain pathology in TBI. Under these situations almost double dose of drugs is needed to induce neuroprotection, not reported earlier. Our laboratory is engaged to see whether nanodelivery of cerebrolysin could have an added therapeutic value in this complicated situation of brain injury, a subject that is currently being investigated in our laboratory.
  •  
8.
  • Sahib, Seaab, et al. (författare)
  • Potentiation of spinal cord conduction and neuroprotection following nanodelivery of DL-3-n-butylphthalide in titanium implanted nanomaterial in a focal spinal cord injury induced functional outcome, blood-spinal cord barrier breakdown and edema formation
  • 2019
  • Ingår i: New Therapeutic Strategies for Brain Edema and Cell Injury. - : Elsevier. - 9780128167540 ; , s. 153-188
  • Bokkapitel (refereegranskat)abstract
    • Spinal cord injury (SCI) is a devastating disease inflicting lifetime disability to the victims. Military personnel are quite often victims of SCI for which no suitable therapeutic strategies have been developed so far. The main reason for SCI induced disability is loss of neural connections below and above the lesion site causing motor paralysis and somatosensory disturbances Loss of neuronal connections thwart spinal cord conduction resulting in motor function disability. To enhance spinal cord conduction grafting of peripheral nerves, implant of hydrogels filled with neuroprotective drugs is used but so far, no satisfactory results re achieved. In this regards implants of microelectrode for enhancing tissue connectivity is suggested that is still under experimental state. We have used titanium implant with or without TiO2 nanowires in a focal spinal cord injury and studies spinal cord pathology and motor function. In addition, we also combined with nanowired delivery of a potential neuroprotective drug DL-3-n-butylphthalide (DL-NBP) to the spinal cord in a rat model. Our observations show that a combination of titanium implant with nanowired delivery of DL-NBP induces superior neuroprotection and enhance motor functions after SCI. This treatment also restored blood-spinal cord barrier (BSCB) function and reduces edema formation and cell injury after SCI, not reports earlier.
  •  
9.
  • Sharma, Aruna, et al. (författare)
  • 5-Hydroxytryptophan : A precursor of serotonin influences regional blood-brain barrier breakdown, cerebral blood flow, brain edema formation, and neuropathology
  • 2019
  • Ingår i: New Therapeutic Strategies for Brain Edema and Cell Injury. - : Elsevier. - 9780128167540 ; , s. 1-44
  • Bokkapitel (refereegranskat)abstract
    • 5-Hydroxytryptophan (5-HTP), a precursor of serotonin, is therapeutically used for several psychiatric disorders such as anxiety and depression in the clinic. However, severe side effects, including abnormal mental functions, behavioral disturbances and intolerance are associated with this treatment. 5-HTP-induced elevation of plasma and brain serotonin levels may affect blood-brain barrier (BBB) breakdown, edema formation and regional cerebral blood flow (CBF) disturbances. Breakdown of BBB to serum proteins leads to vasogenic brain edema formation and cellular injuries. However, 5-HTP-neurotoxicity is still not well known. In this investigations 5-HTP induced elevation of endogenous plasma and brain serotonin levels and its effect on BBB breakdown, edema formation neuronal injuries was examined in a rat model. Furthermore, potential role of oxidative stress and nitric oxide (NO) was evaluated. In addition, several neurochemical agents such as p-CPA (5-HT synthesis inhibitor) indomethacin (prostaglandin synthase inhibitor), diazepam (ant stress drug), cyproheptadine, ketanserin (5-HT2 receptor antagonists) and vinblastine (inhibitor of microtubule function) were examined on 5-HT neurotoxicity. Our observations suggest that 4h after 5-HTP administrations, the endogenous serotonin levels increased by fourfold (150mg/kg) in the plasma and brain associated with profound hyperthermia (+3.86 +/- 0.24 degrees C, oxidative stress and NO upregulation. Breakdown of the BBB to Evans blue albumin (EBA) in 8 brain regions and to ([131])Iodine in 14 brain regions was observed. The CBF exhibited marked reduction in all the brain regions examined. Brain edema and cellular injuries are present in the areas associated with BBB disruption. Drug treatments reduced the BBB breakdown, edema formation NO production and brain pathology. These observations are the first to point out that 5-HTP-neurotoxicity caused by BBB breakdown, edema formation and NO production is instrumental in causing adverse mental and behavioral abnormalities, not reported earlier.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy