SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Murgas F.) "

Sökning: WFRF:(Murgas F.)

  • Resultat 1-10 av 49
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
2.
  • Nielsen, L. D., et al. (författare)
  • Mass determinations of the three mini-Neptunes transiting TOI-125
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 492:4, s. 5399-5412
  • Tidskriftsartikel (refereegranskat)abstract
    • The Transiting Exoplanet Survey Satellite, TESS, is currently carrying out an all-sky search for small planets transiting bright stars. In the first year of the TESS survey, a steady progress was made in achieving the mission's primary science goal of establishing bulk densities for 50 planets smaller than Neptune. During that year, the TESS's observations were focused on the southern ecliptic hemisphere, resulting in the discovery of three mini-Neptunes orbiting the star T01-125, a V = 11,0 KO dwarf. We present intensive HARPS radial velocity observations, yielding precise mass measurements for TO1-125b, TOI-125c, and TOI-125d. TOI-125b has an orbital period of 4,65 d, a radius of 2,726 + 0,075 RE, a mass of 9,50 0,88 ME, and is near the 2:1 mean motion resonance with TOI-125c at 9.15 d. TOI-125c has a similar radius of 2,759 0.10 RE and a mass of 6,63 + 0,99 ME, being the puffiest of the three planets. T01-125d has an orbital period of 19,98 d and a radius of 2.93 + 0,17 RE and mass 13,6 1,2 ME, For T01-125b and d, we find unusual high eccentricities of 0.19 0.04 and 0.17+(c):(!,(, respectively. Our analysis also provides upper mass limits for the two low-SNR planet candidates in the system; for T01-125.04 (Rp = 1.36 RE, P = 0.53 d), we find a 2a upper mass limit of 1.6 ME, whereas T01-125.05 (RP = 4.2-'2E44 RE, P = 13.28 d) is unlikely a viable planet candidate with an upper mass limit of 2.7 ME. We discuss the internal structure of the three confirmed planets, as well as dynamical stability and system architecture for this intriguing exoplanet system.
  •  
3.
  • Barragan, O., et al. (författare)
  • The young HD 73583 (TOI-560) planetary system: two 10-M-circle plus mini-Neptunes transiting a 500-Myr-old, bright, and active K dwarf
  • 2022
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 514:2, s. 1606-1627
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and characterization of two transiting planets observed by TESS in the light curves of the young and bright (V = 9.67) star HD73583 (TOI-560). We perform an intensive spectroscopic and photometric space- and ground-based follow-up in order to confirm and characterize the system. We found that HD73583 is a young (similar to 500 Myr) active star with a rotational period of 12.08 +/- 0.11 d, and a mass and radius of 0.73 +/- 0.02 M-circle dot and 0.65 +/- 0.02 R-circle dot, respectively. HD 73583 b (P-b = 6.3980420(-0.0000062)(+0.0000067 )d) has a mass and radius of 10.2(-3.1)(+3.4) M-circle plus and 2.79 +/- 0.10 R-circle plus, respectively, which gives a density of 2.58(-0.81)(+0.95) g cm(-3). HD 73583 c (P-c = 18.87974(-0.00074)(+0.00086) d) has a mass and radius of 9.7(-1.7)(+1.8) M-circle plus and 2.39(-0.09)(+0.10) R-circle plus, respectively, which translates to a density of 3.88(-0.80)(+0.91) g cm(-3). Both planets are consistent with worlds made of a solid core surrounded by a volatile envelope. Because of their youth and host star brightness, they both are excellent candidates to perform transmission spectroscopy studies. We expect ongoing atmospheric mass-loss for both planets caused by stellar irradiation. We estimate that the detection of evaporating signatures on H and He would be challenging, but doable with present and future instruments.
  •  
4.
  • Korth, J., et al. (författare)
  • TOI-1130: A photodynamical analysis of a hot Jupiter in resonance with an inner low-mass planet
  • 2023
  • Ingår i: Astronomy & Astrophysics. - 1432-0746 .- 0004-6361. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • The TOI-1130 is a known planetary system around a K-dwarf consisting of a gas giant planet, TOI-1130 c on an 8.4-day orbit that is accompanied by an inner Neptune-sized planet, TOI-1130 b, with an orbital period of 4.1 days. We collected precise radial velocity (RV) measurements of TOI-1130 with the HARPS and PFS spectrographs as part of our ongoing RV follow-up program. We performed a photodynamical modeling of the HARPS and PFS RVs, along with transit photometry from the Transiting Exoplanet Survey Satellite (TESS) and the TESS Follow-up Observing Program (TFOP). We determined the planet masses and radii of TOI-1130 b and TOI-1130 c to be Mb = 19.28 ± 0.97M⊕ and Rb = 3.56 ± 0.13 R⊕, and Mc = 325.59 ± 5.59M⊕ and Rc = 13.32−1.41+1.55 R⊕, respectively. We have spectroscopically confirmed the existence of TOI-1130 b, which had previously only been validated. We find that the two planets have orbits with small eccentricities in a 2:1 resonant configuration. This is the first known system with a hot Jupiter and an inner lower mass planet locked in a mean-motion resonance. TOI-1130 belongs to the small, yet growing population of hot Jupiters with an inner low-mass planet that poses a challenge to the pathway scenario for hot Jupiter formation. We also detected a linear RV trend that is possibly due to the presence of an outer massive companion.
  •  
5.
  • Lam, K. W.F., et al. (författare)
  • GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star
  • 2021
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 374:6572, s. 1271-1275
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrashort-period (USP) exoplanets have orbital periods shorter than 1 day. Precise masses and radii of USP exoplanets could provide constraints on their unknown formation and evolution processes. We report the detection and characterization of the USP planet GJ 367b using high-precision photometry and radial velocity observations. GJ 367b orbits a bright (V-band magnitude of 10.2), nearby, and red (M-type) dwarf star every 7.7 hours. GJ 367b has a radius of 0.718 ± 0.054 Earth-radii and a mass of 0.546 ± 0.078 Earth-masses, making it a sub-Earth planet. The corresponding bulk density is 8.106 ± 2.165 grams per cubic centimeter—close to that of iron. An interior structure model predicts that the planet has an iron core radius fraction of 86 ± 5%, similar to that of Mercury’s interior.
  •  
6.
  • Luque, R., et al. (författare)
  • A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 623:7989, s. 932-937
  • Tidskriftsartikel (refereegranskat)abstract
    • Planets with radii between that of the Earth and Neptune (hereafter referred to as ‘sub-Neptunes’) are found in close-in orbits around more than half of all Sun-like stars 1,2. However, their composition, formation and evolution remain poorly understood 3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R ⊕ to 2.85R ⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.
  •  
7.
  • Murgas, F., et al. (författare)
  • TOI-674b: An oasis in the desert of exo-Neptunes transiting a nearby M dwarf
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The NASA mission TESS is currently doing an all-sky survey from space to detect transiting planets around bright stars. As part of the validation process, the most promising planet candidates need to be confirmed and characterized using follow-up observations. Aims. In this article, our aim is to confirm the planetary nature of the transiting planet candidate TOI-674b using spectroscopic and photometric observations. Methods. We use TESS, Spitzer, ground-based light curves, and HARPS spectrograph radial velocity measurements to establish the physical properties of the transiting exoplanet candidate TOI-674b. We perform a joint fit of the light curves and radial velocity time series to measure the mass, radius, and orbital parameters of the candidate. Results. We confirm and characterize TOI-674b, a low-density super-Neptune transiting a nearby M dwarf. The host star (TIC 158588995, V = 14.2 mag, J = 10.3 mag) is characterized by its M2V spectral type with M = 0.420 ± 0.010 M , R = 0.420 ± 0.013 R , and Teff = 3514 ± 57 K; it is located at a distance d = 46.16 ± 0.03 pc. Combining the available transit light curves plus radial velocity measurements and jointly fitting a circular orbit model, we find an orbital period of 1.977143 ± 3 × 10-6 days, a planetary radius of 5.25 ± 0.17 R , and a mass of 23.6 ± 3.3 M implying a mean density of ρp =0.91 ± 0.15 g cm-3. A non-circular orbit model fit delivers similar planetary mass and radius values within the uncertainties. Given the measured planetary radius and mass, TOI-674b is one of the largest and most massive super-Neptune class planets discovered around an M-type star to date. It is found in the Neptunian desert, and is a promising candidate for atmospheric characterization using the James Webb Space Telescope.
  •  
8.
  • Serrano, L. M., et al. (författare)
  • The HD 93963 A transiting system: A 1.04d super-Earth and a 3.65 d sub-Neptune discovered by TESS and CHEOPS
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery of two small planets transiting HD 93963A (TOI-1797), a GOV star (M-* = 1.109 +/- 0.043M(circle dot), R-* = 1.043 +/- 0.009 R-circle dot) in a visual binary system. We combined TESS and CHEOPS space-borne photometry with MuSCAT 2 ground-based photometry, 'Alopeke and PHARO high-resolution imaging, TRES and FIES reconnaissance spectroscopy, and SOPHIE radial velocity measurements. We validated and spectroscopically confirmed the outer transiting planet HD 93963 A c, a sub-Neptune with an orbital period of P-c approximate to 3.65 d that was reported to be a TESS object of interest (TOI) shortly after the release of Sector 22 data. HD 93963 A c has amass of M-c = 19.2 +/- 4.1 M-circle plus and a radius of R-c = 3.228 +/- 0.059 R-circle plus, implying a mean density of rho(c) = 3.1 +/- 0.7 g cm(-3). The inner object, HD 93963 A b, is a validated 1.04 d ultra-short period (USP) transiting super-Earth that we discovered in the TESS light curve and that was not listed as a TOI, owing to the low significance of its signal (TESS signal-to-noise ratio approximate to 6.7, TESS + CHEOPS combined transit depth D-b = 141.5(-8.3)(+8.5) ppm). We intensively monitored the star with CHEOPS by performing nine transit observations to confirm the presence of the inner planet and validate the system. HD 93963 A b is the first small (R-b = 1.35 +/- 0.042 R-circle plus) USP planet discovered and validated by TESS and CHEOPS. Unlike planet c, HD 93963 Ab is not significantly detected in our radial velocities (M-b = 7.8 +/- 3.2 M-circle plus). The two planets are on either side of the radius valley, implying that they could have undergone completely different evolution processes. We also discovered a linear trend in our Doppler measurements, suggesting the possible presence of a long-period outer planet. With a V-band magnitude of 9.2, HD 93963 A is among the brightest stars known to host a USP planet, making it one of the most favourable targets for precise mass measurement via Doppler spectroscopy and an important laboratory to test formation, evolution, and migration models of planetary systems hosting ultra-short period planets.
  •  
9.
  • Turrini, D., et al. (författare)
  • The GAPS programme at TNG : XLVIII. The unusual formation history of V1298 Tau
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 679
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Observational data from space- and ground-based campaigns have revealed that the 10-30 Ma old V1298Tau star hosts a compact and massive system of four planets. Mass estimates are available for the two outer giant planets and point to unexpectedly high densities for their young ages.Aims. We investigate the formation of these two outermost giant planets, V1298 Tau b and e, and the present dynamical state of V1298 Tau's global architecture in order to shed light on the history of this young and peculiar extrasolar system.Methods. We performed detailed N-body simulations to explore the link between the densities of V1298 Tau b and e and their migration and accretion of planetesimals within the native circumstellar disk. We combined N-body simulations and the normalized angular momentum deficit (NAMD) analysis of the architecture to characterize V1298 Tau's dynamical state and connect it to the formation history of the system. We searched for outer planetary companions to constrain V1298 Tau's planetary architecture and the extension of its primordial circumstellar disk.Results. The high densities of V1298 Tau b and e suggest they formed at quite a distance from their host star, likely beyond the CO2 snowline. The higher nominal density of V1298 Tau e suggests it formed farther out than V1298 Tau b. The current architecture of V1298 Tau is not characterized by resonant chains. Planet-planet scattering with an outer giant planet is the most likely cause for the lack of a resonant chain between V1298 Tau's planets, but currently our search for outer companions using SPHERE and Gaia observations can exclude only the presence of planets more massive than 2 MJ.Conclusions. The most plausible scenario for V1298 Tau's formation is that the system formed by convergent migration and resonant trapping of planets born in a compact and plausibly massive disk. In the wake of their migration, V1298 Tau b and e would have left a dynamically excited protoplanetary disk, naturally creating the conditions for the later breaking of the resonant chain by planet-planet scattering.
  •  
10.
  • Van Eylen, Vincent, et al. (författare)
  • Masses and compositions of three small planets orbiting the nearby M dwarf L231-32 (TOI-270) and the M dwarf radius valley
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 507:2, s. 2154-2173
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on precise Doppler measurements of L231-32 (TOI-270), a nearby M dwarf (d = 22 pc, M = 0.39 M, R = 0.38 R), which hosts three transiting planets that were recently discovered using data from the Transiting Exoplanet Survey Satellite (TESS). The three planets are 1.2, 2.4, and 2.1 times the size of Earth and have orbital periods of 3.4, 5.7, and 11.4 d. We obtained 29 high-resolution optical spectra with the newly commissioned Echelle Spectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) and 58 spectra using the High Accuracy Radial velocity Planet Searcher (HARPS). From these observations, we find the masses of the planets to be 1.58 ± 0.26, 6.15 ± 0.37, and 4.78 ± 0.43 M, respectively. The combination of radius and mass measurements suggests that the innermost planet has a rocky composition similar to that of Earth, while the outer two planets have lower densities. Thus, the inner planet and the outer planets are on opposite sides of the 'radius valley'-a region in the radius-period diagram with relatively few members-which has been interpreted as a consequence of atmospheric photoevaporation. We place these findings into the context of other small close-in planets orbiting M dwarf stars, and use support vector machines to determine the location and slope of the M dwarf (Teff < 4000 K) radius valley as a function of orbital period. We compare the location of the M dwarf radius valley to the radius valley observed for FGK stars, and find that its location is a good match to photoevaporation and core-powered mass-loss models. Finally, we show that planets below the M dwarf radius valley have compositions consistent with stripped rocky cores, whereas most planets above have a lower density consistent with the presence of a H-He atmosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 49

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy